CHEN Xi, YAO Yi-rong, ZHENG Quan. Finite Dimensional Approximation to Global Minimizers in Functional Spaces With R-Convergence[J]. Applied Mathematics and Mechanics, 2011, 32(1): 103-112. doi: 10.3879/j.issn.1000-0887.2011.01.011
Citation: CHEN Xi, YAO Yi-rong, ZHENG Quan. Finite Dimensional Approximation to Global Minimizers in Functional Spaces With R-Convergence[J]. Applied Mathematics and Mechanics, 2011, 32(1): 103-112. doi: 10.3879/j.issn.1000-0887.2011.01.011

Finite Dimensional Approximation to Global Minimizers in Functional Spaces With R-Convergence

doi: 10.3879/j.issn.1000-0887.2011.01.011
  • Received Date: 2010-09-20
  • Rev Recd Date: 2010-11-24
  • Publish Date: 2011-01-15
  • New concept of convergence(R-convergence)of a sequence of measures was applied to characterize global minimizers in functional space as a sequence of approximating solutions in finite-dimensional spaces.A deviation integral approach was used to find such solutions.For a constrained problem,a penalized deviation integral algorithm was proposed to convert it to unconstrained ones.A numerical example on optimal control problem with non convex state constrains was given to show that the algorithm is efficient.
  • loading
  • [1]
    Zheng Q, Zhuang D. Integral global optimization of constrained problems in functional spaces with discontinuous penalty functions[C]Floundas C A, Pardalos P M.Recent Advances in Global Optimization. New Jersey: Princeton University Press, 1992, 298-320.
    [2]
    HE Zhen-zhen, CUI Hong-quan, ZHENG Quan. Finite dimensional approximation to global minima—an integral approach[J]. OR Transactions, 2005, 9(1): 21-31.
    [3]
    Phu H X, Hoffmann A. Essential supremum and supremum of summable functions[J]. Numer Funct Anal and Optimiz, 1996, 17(1/2): 167-180.
    [4]
    WU Dog-hua, YU Wu-yang, ZHENG Quan. A sufficient and necessary condition for global optimization[J]. Applied Mathematics Letters, 2010, 23(1): 17-21. doi: 10.1016/j.aml.2009.07.020
    [5]
    陈柳,姚奕荣,郑权. 变差积分型约束总极值问题的不连续罚函数[J]. 应用数学和力学, 2009, 30(9):1125-1134.(CHEN Liu, YAO Yi-rong, ZHENG Quan. Discontinuous penalty approach with deviation integral for global constrained minimization[J]. Applied Mathematics and Mechanics(English Edition),2009, 30(9):1201-1210.)
    [6]
    YAO Yi-rong,CHEN Liu, ZHENG Quan. Optimality condition and algorithm with deviation integral for global optimaization[J]. Journal of Mathematical Analysis and Applications,2009, 357(2): 371-384. doi: 10.1016/j.jmaa.2009.04.022
    [7]
    SHI Shu-zhong, ZHENG Quan, ZHUANG De-ming. Discontinuous robust mapping are approximatable[J]. Trans Amer Math Soc, 1995, 347(12): 4943-4957. doi: 10.1090/S0002-9947-1995-1308024-X
    [8]
    ZHENG Quan. Robust analysis and global minimization of a class of discontinuous functions (I)[J]. Acta Mathematicae Applicatae Sinica, English Ser, 1990, 6(3): 205-223. doi: 10.1007/BF02019147
    [9]
    ZHENG Quan. Robust analysis and global minimization of a class of discontinuous functions (II)[J]. Acta Mathematicae Applicatae Sinica, English Ser, 1990, 6(3): 317-337. doi: 10.1007/BF02015339
    [10]
    ZHENG Quan. Robust analysis and global optimization[J]. International J Computers and Mathematics With Applications, 1990, 24(1): 273-286.
    [11]
    HONG Chew Soo, ZHENG Quan. Integral Global Optimization-Theory, Implementation and Applications[M]. Berlin Heidelberg: Spring-Verlag, 1988.
    [12]
    ZHENG Quan, Zhang L. Global minimization of constrained problems with discontinuous penalty functions[J]. International J Computers and Mathematics With Applications, 1999, 37(4/5): 41-58.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1535) PDF downloads(717) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return