Citation: | LIU Yan-bin, CHEN Yu-shu, CAO Qing-jie. Chaos and Sub-Harmonic Resonance of Nonlinear System Without Small Parameters[J]. Applied Mathematics and Mechanics, 2011, 32(1): 1-10. doi: 10.3879/j.issn.1000-0887.2011.01.001 |
[1] |
CHEN Yu-shu, Leung Andrew Y T. Bifurcation and Chaos in Engineering[M]. New York: Springer ,1998.
|
[2] |
Wiggins S.Introduction to Applied Nonlinear Dynamical Systems and Chaos[M].New York:Springer-Verlag,1990.
|
[3] |
Greenspan B D, Holmes P J.Homoclinic orbits, subharmonics and global bifurcations in forced oscillations[C] Barenblatt G, Iooss G, Joseph D D. Nonlinear Dynamics and Turbulence. London: Pitman, 1983: 172-214.
|
[4] |
Wiggins S. Global Bifurcations and Chaos[M].New York:Springer-Verlag,1988.
|
[5] |
Liao S J. Beyond Perturbation:Introduction to Homotopy Analysis Method[M]. Bpca Taton: Chapmaen Hall/CRC Press, 2003.
|
[6] |
Liao S J. The proposed homotopy analysis techniques for the solution of nonlinear problems[D]. Ph D dissertation. Shanghai: Shanghai Jiao Tong University, 1992.
|
[7] |
Liao S J. On the homotopy analysis method for nonlinear problems[J].Appl Math Comput, 2004,147(2): 499-513. doi: 10.1016/S0096-3003(02)00790-7
|
[8] |
Liao S J. A kind of approximate solution technique which does not depend upon small parameters—Ⅱ:an application in fluid mechanics[J]. Int J Non-Linear Mech, 1997, 32(4):815-822. doi: 10.1016/S0020-7462(96)00101-1
|
[9] |
Liao S J. An explicit, totally analytic approximation of Blasius viscous flow problems[J]. Int J Non-Linear Mech, 1999,34(4):759-785 doi: 10.1016/S0020-7462(98)00056-0
|