YANG Yong-qin, XIAO Liu-chao, CHEN Shao-chun. Nonconforming Finite Elements for the Equation of Planar Elasticity[J]. Applied Mathematics and Mechanics, 2010, 31(12): 1454-1464. doi: 10.3879/j.issn.1000-0887.2010.12.006
Citation: YANG Yong-qin, XIAO Liu-chao, CHEN Shao-chun. Nonconforming Finite Elements for the Equation of Planar Elasticity[J]. Applied Mathematics and Mechanics, 2010, 31(12): 1454-1464. doi: 10.3879/j.issn.1000-0887.2010.12.006

Nonconforming Finite Elements for the Equation of Planar Elasticity

doi: 10.3879/j.issn.1000-0887.2010.12.006
  • Received Date: 1900-01-01
  • Rev Recd Date: 2010-09-26
  • Publish Date: 2010-12-15
  • Two new locking-free nonconforming finite elements for the pure displacement planarela sticity problem were presented.Convergen cerates of the elements were uniformly optimal with respect to K.T he energy norm and L2 norm errors were proved to be O (h2) and O (h3),respectively.La stly,numerical tests are carried out,which coincide with the theoretical analysis.
  • loading
  • [1]
    Arnold D N, Douglas J, Gupta C P. A family of higher order mixed finite element methods for plane elasticity[J].Numer Math,1984, 45(1): 1-22. doi: 10.1007/BF01379659
    [2]
    Arnold D N, Falk R S. A new mixed formulation for elasticity[J].Numer Math, 1988, 53(1/2): 13-30. doi: 10.1007/BF01395876
    [3]
    Babuska I, Suri M. Locking effects in the finite element approximation of elasticity problems[J].Numer Math, 1992, 62(1): 439-463. doi: 10.1007/BF01396238
    [4]
    Scott L R, Vogelius M. Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials[J].Math Model Numer Anal, 1985, 19(1): 113-143.
    [5]
    Vogelius M. An analysis of the p-version of the finite element method for nearly incompressible materials,uniformly valid, optimal order estimates[J].Numer Math, 1983, 41(1): 39-53. doi: 10.1007/BF01396304
    [6]
    Stenberg R, Suri M. Mixed hp finite element methods for problems in elasticity and Stokes flow[J].Numer Math, 1996, 72(3): 367-389. doi: 10.1007/s002110050174
    [7]
    Stenberg R. A family of mixed finite elements for the elasticity problem[J].Numer Math, 1988, 53(5): 513-538. doi: 10.1007/BF01397550
    [8]
    Morley M. A mixed family of elements for linear elasticity[J].Math Comp, 1977, 55: 633-666.
    [9]
    Zhang Z. Analysis of some quadrilateral nonconforming elements for incompressible elasticity[J].SIAM J Numer Anal, 1997, 34(2): 640-663. doi: 10.1137/S0036142995282492
    [10]
    Brenner S C, Sung L Y. Linear finite element methods for planar linear elasticity[J].Math Comp, 1992, 59(220): 321-330. doi: 10.1090/S0025-5718-1992-1140646-2
    [11]
    Brenner S C, Scott L R.The Mathematical Theory of Finite Element Methods[M]. New York: Springer-Verlag, 1994.
    [12]
    Falk R S. Noncomforming finite element methods for the equations of linear elasticity[J].Math Comp, 1991, 51(196): 529-550.
    [13]
    Capatina D, Thomas J M. Nonconforming finite element methods without numerical locking[J].Numer Math, 1998, 81(2): 163-186. doi: 10.1007/s002110050388
    [14]
    Crouzeix M, Raviart P A. Conforming and nonconforming finite element methods for solving stationary Stokes equations[J].RAIRO Anal Numer, 1973, 7(R-3): 33-76.
    [15]
    王烈衡,齐禾. 关于平面弹性问题Locking-free有限元格式[J]. 计算数学, 2002, 24(2): 243-256.
    [16]
    明平兵. 非协调元vs Locking问题[D]. 北京: 中国科学院计算数学所, 1999.
    [17]
    Ciarlet P G.The Finite Element Method for Elliptic Problems[M]. New York: North-Holland, 1978.
    [18]
    YANG Yong-qin, CHEN Shao-chun. A locking-free nonconforming triangular element for planar elasticity with pure traction boundary condition[J].Journal of Computational and Applied Mathematics, 2010, 233(10): 2703-2710. doi: 10.1016/j.cam.2009.11.019
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1820) PDF downloads(970) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return