P. Loganathan, P. Puviarasu, R. Kandasamy. Local Non-Similarity Solution for the Impact of Chemical Reaction on MHD Mixed Convection Heat and Mass Transfer Flow Over a Porous Wedge in the Presence of Suction/Injection[J]. Applied Mathematics and Mechanics, 2010, 31(12): 1435-1444. doi: 10.3879/j.issn.1000-0887.2010.12.004
Citation: P. Loganathan, P. Puviarasu, R. Kandasamy. Local Non-Similarity Solution for the Impact of Chemical Reaction on MHD Mixed Convection Heat and Mass Transfer Flow Over a Porous Wedge in the Presence of Suction/Injection[J]. Applied Mathematics and Mechanics, 2010, 31(12): 1435-1444. doi: 10.3879/j.issn.1000-0887.2010.12.004

Local Non-Similarity Solution for the Impact of Chemical Reaction on MHD Mixed Convection Heat and Mass Transfer Flow Over a Porous Wedge in the Presence of Suction/Injection

doi: 10.3879/j.issn.1000-0887.2010.12.004
  • Received Date: 1900-01-01
  • Rev Recd Date: 2010-10-30
  • Publish Date: 2010-12-15
  • Combined heat and mass transfer on free,forced and mixed convection flow along a porous wedge with magnetic effect in the presence of chemical reaction was investigated.The flow field characteristics were analyzed using the Runge-Kutta Gillwith shooting method as well as the local non-similarity method up to thirdlevel of truncation was used toreduce the governing partial differential equations into nineord inary differential equations.The governing boundary layer equations were written into a dimensionless form by Falkner-Skan transform ations.Because of the effect of suction/injection on the wall of the wedge with buoyancy force and variable wall temperature,the flow field is locally nonsimilar.Numerical calculations up to thirdorder level of truncation are carried out for different values of dmiension less param eters as a special case.Effects of the strength of magnetic field in the presence of chemical reaction with variable wall temperature and concentration on the dimensionless velocity,temperature and concen tration profiles are shown graphically.
  • loading
  • [1]
    Gebhart B,Pera L. The nature of vertical natural convection flows resulting from the combined buoyancy effects of thermal and mass diffusion[J]. Int J Heat and Mass Transfer, 1971,14(12):2025-2050. doi: 10.1016/0017-9310(71)90026-3
    [2]
    Pera L, Gebhart B. Natural convection boundary layer over horizontal and slightly inclined surfaces[J]. Int J Heat and Mass Transfer,1972,16(6):1131-1146.
    [3]
    Chen T S , Yuh C F,Moutsoglou A. Combined heat and mass transfer in mixed convection along vertical and inclined plates[J]. Int J Heat and Mass Transfer,1980,23(4):527-537. doi: 10.1016/0017-9310(80)90094-0
    [4]
    Kandasamy R,Devi S P A . Effects of chemical reaction, heat and mass transfer on non-linear laminar boundary-layer flow over a wedge with suction or injection[J]. Journal of Computational and Applied Mechanics, 2004,5(1):21-31.
    [5]
    Yih K A. MHD forced convection flow adjacent to non-isothermal wedge[J]. Int Commun Heat and Mass Transfer,1999,26(6):819-827. doi: 10.1016/S0735-1933(99)00070-6
    [6]
    Watanabe T, Funazaki K,Taniguchi H. Theoretical analysis on mixed convection boundary layer flow over a wedge with uniform suction or injection[J]. Acta Mechanica, 1994,105(1/4):133-141.
    [7]
    Kafoussias N G,Nanousis N D. Magnetohydrodynamic laminar boundary layer flow over a wedge with suction or injection[J]. Can J Physics, 1997,75(10):733-745. doi: 10.1139/p97-024
    [8]
    Sparrow E M, Quack H,Boerner C J. Local nonsimilarity boundary layer solution[J] . AIAA J, 1970,8:1936 -1942. doi: 10.2514/3.6029
    [9]
    Sparrow E M,Yu H S. Local nonsimilarity thermal boundary layer solutions[J]. J Heat Transfer, 1971,93(4):328-334. doi: 10.1115/1.3449827
    [10]
    Minkowycz W J,Sparrow E M. Local nonsimilarity solutions for natural convection on a vertical cylinder[J] . J Heat Transfer, 1974,96(2):178-183. doi: 10.1115/1.3450161
    [11]
    Novotny J L, Bankston J D, Lloyd J R. Local nonsimilarity applied to free convection boundary layers with radiation interaction[J].Prog Astronaut Aeronaut, 1975,39:309-330.
    [12]
    Mucoglu A,Chen T S. Mixed convection on inclined surfaces[J]. Journal of Heat Transfer , 1979,101(3):422-426. doi: 10.1115/1.3450992
    [13]
    Minkowycz W J, Sparrow E M. Numerical solution scheme for local nonsimilarity boundary layer analysis[J]. Numerical Heat Transfer, 1978,1(1/3):69-85.
    [14]
    Kafoussias N G, William EW. An improved approximation technique to obtain numerical solutions of a class of two-point boundary value similarity problems in fluid mechanics[J]. Int J Numer Methods Fluids,1993,17(2):145 -162. doi: 10.1002/fld.1650170204
    [15]
    Risbeck W R, Chen T S, Armaly B F. Laminar mixed convection on horizontal flat plates with variable surface heat flux[J]. Int J Heat and Mass Transfer,1994,37:699-704. doi: 10.1016/0017-9310(94)90142-2
    [16]
    Hossain M A, Nakayama A. Non-Darcy free convection flow along a vertical cylinder embedded in a porous medium with surface mass flux[J]. Int J Heat and Fluid FIow,1993,14(4):385-390. doi: 10.1016/0142-727X(93)90012-C
    [17]
    Sparrow E M, Yu H S. Local nonsimilarity thermal boundary-layer solutions[J]. J Heat Trans,1971,93(4):328-332. doi: 10.1115/1.3449827
    [18]
    Hossain M A, Banu N, Nakayama A. Non-Darcy forced convection flow over a wedge embedded in a porous medium[J]. Numerical Heat Transfer Part A,1994,26(4):399-414. doi: 10.1080/10407789408956000
    [19]
    Minkowycz W J, Sparrow E M, Schneider G E, Pletcher R H. Handbook of Numerical Heat Transfer[M]. New York :John Wiley and Sons,1988: 210.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1731) PDF downloads(796) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return