BAI Yan-hong, FENG Min-fu, WANG Chuan-long. A New Nonconforming Local Projection Stabilization for Generalized Oseen Equations[J]. Applied Mathematics and Mechanics, 2010, 31(11): 1360-1371. doi: 10.3879/j.issn.1000-0887.2010.11.009
Citation: BAI Yan-hong, FENG Min-fu, WANG Chuan-long. A New Nonconforming Local Projection Stabilization for Generalized Oseen Equations[J]. Applied Mathematics and Mechanics, 2010, 31(11): 1360-1371. doi: 10.3879/j.issn.1000-0887.2010.11.009

A New Nonconforming Local Projection Stabilization for Generalized Oseen Equations

doi: 10.3879/j.issn.1000-0887.2010.11.009
  • Received Date: 1900-01-01
  • Rev Recd Date: 2010-10-05
  • Publish Date: 2010-11-15
  • A new method of nonconforming local projection stabilization for the generalized Oseen equations was proposed by a nonconforming inf-sup stable element pair for approximating the velocity and pressure. The method has several attractive feature. It adds an local projection term only on the sub-scale (Hh). The stabilized term is simple compared with the residual-free bubble element method can handle the influence of strong convection. The numerical illustrations agree with the theoretical expectation very well.
  • loading
  • [1]
    BAI Yan-hong, FENG Min-fu,KONG Hua.Analysis of a nonconforming RFB stabilized method for the nonstationary convection-dominated diffusion equation[J].Mathematica Numerica Sinica, 2009, 31(4): 363-378.
    [2]
    Franca L P, John V, Matthies G, Tobiska L. An inf-sup stable and residual-free bubble element for the oseen equations[R]. UCDHSC / CCM Report, No. 236, 2007.
    [3]
    GE Zhi-hao, FENG Min-fu, HE Yin-nian. A stabilized nonconfirming finite element method based on multiscale enrichment for the stationary Navier-Stokes equations[J]. Applied Mathematics and Computation, 2008, 202(2): 700-707. doi: 10.1016/j.amc.2008.03.016
    [4]
    ZHOU Tian-xiao, FENG Min-fu. A least squares Petrov-Galerkin finite element method for the stationary Navier-Stokes equations[J]. Mathematics of Computation, 1993, 60(202): 531-543. doi: 10.1090/S0025-5718-1993-1164127-6
    [5]
    Lube G, Rapin G, Lwe G. Local projection stabilization for incompressible flows:equal-order vs. inf-sup stable interpolation[J]. Electronic Transactions on Numerical Analysis, 2008, 32: 106-122.
    [6]
    骆艳, 冯民富. 可压缩Navier-Stokes方程的压力梯度局部投影间断有限元法[J].应用数学和力学, 2008, 29(2): 157-168.
    [7]
    Guermod J L. Stabilization of Galerkin approximations of transport equations by subgrid modeling[J]. Mathematical Modelling and Numerical Analysis, 1999, 33(6): 1293-1316. doi: 10.1051/m2an:1999145
    [8]
    Guermond J L, Marra A, Quartapelle L. Subgrid stabilized projection method for 2D unsteady flows at high Reynolds numbers[J]. Computer Methods in Applied Mechanics and Engineering,2006, 195(44/47): 5857-5876. doi: 10.1016/j.cma.2005.08.016
    [9]
    Hughes T J R, Mazzei L, Jansen K E. Large eddy simulation and the variational multiscale method[J]. Comput Visual Sci, 2000, 3(1/2): 47-59. doi: 10.1007/s007910050051
    [10]
    Kaya S, Layton W. Subgrid-scale eddy viscosity methods are variational multiscale methods[R]. Pittsburgh, PA: Technical report, TR-MATH 03-05, University of Pittsburgh, 2003.
    [11]
    John V, Kaya S. Finite element error analysis of a variational multiscale method for the Navier- Stokes equations[J]. Advances in Computational Mathematics, 2008, 28(1): 43-61.
    [12]
    Kaya S, RiviIére B. A discontinuous subgrid eddy viscosity method for the time-dependent Navier-Stokes equations[J]. SIAM J Numer Anal, 2005, 43(4): 1572-1595. doi: 10.1137/S0036142903434862
    [13]
    Kaya S, RiviIére B. A two-grid stabilization method for solving the steady-state Navier-Stokes equations[J].Numerical Methods for Partial Differential, 2006, 22(3): 728-743. doi: 10.1002/num.20120
    [14]
    Kaya S, Layton W, RiviIére B. Subgrid stabilized defect correction methods for the Navier- Stokes equations[J]. SIAM Journal on Numerical Analysis, 2006, 44(4): 1639-1654. doi: 10.1137/050623942
    [15]
    Linda El Alaoui, Alexandre Ern. Nonconforming finite element methods with subgrid viscosity applied to advection-diffusive-reaction equations[J]. Numerical Methods for Partical Differential Equations, 2006, 22(5):1106-1126. doi: 10.1002/num.20146
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1831) PDF downloads(844) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return