J. C. Misra, A. Sinha, G. C. Shit. Flow of a Biomagnetic Viscoelastic Fluid:Application to Estimation of Blood Flow in Arteries During Electromagnetic Hyperthermia,a Therapeutic Procedure for Cancer Treatment[J]. Applied Mathematics and Mechanics, 2010, 31(11): 1330-1343. doi: 10.3879/j.issn.1000-0887.2010.11.006
Citation: J. C. Misra, A. Sinha, G. C. Shit. Flow of a Biomagnetic Viscoelastic Fluid:Application to Estimation of Blood Flow in Arteries During Electromagnetic Hyperthermia,a Therapeutic Procedure for Cancer Treatment[J]. Applied Mathematics and Mechanics, 2010, 31(11): 1330-1343. doi: 10.3879/j.issn.1000-0887.2010.11.006

Flow of a Biomagnetic Viscoelastic Fluid:Application to Estimation of Blood Flow in Arteries During Electromagnetic Hyperthermia,a Therapeutic Procedure for Cancer Treatment

doi: 10.3879/j.issn.1000-0887.2010.11.006
  • Received Date: 1900-01-01
  • Rev Recd Date: 2010-09-21
  • Publish Date: 2010-11-15
  • The theoretical investigation of a fundamental problem of flow of a biomagnetic fluid through a porous medium subjected to a magnetic field by using the principles of Biomagnetic Fluid Dynamics (BFD) was dealt with. The study pertains to a situation where magnetization of the fluid varies with temperature. The fluid was considered to be non-Newtonian,its flow being governed by the equation of a second-grade fluid,which takes into account the effect of fluid visco-elasticity. The walls of the channel were assumed to be stretchable,where the surface velocity was proportional to the longitudinal distance from the origin of coordinates. The problem was first reduced to that of solving a system of coupled nonlinear differential equations that involve seven parameters. Considering blood as a biomagnetic fluid and using the present analysis,an attempt had been made to compute some parameters of blood flow,by developing a suitable numerical method and by devising an appropriate finite difference scheme. The computational results were presented in graphical form and thereby some theoretical predictions were made in respect of the hemodynamical flow of blood in a hyperthermal state,under the action of a magnetic field. The results reported here clearly indicate that presence of a magnetic dipole bears the potential to affect the characteristics of blood flow in arteries to a significant extent during the therapeutic procedure of electromagnetic hyperthermia. The study should attract the attention of clinicians and the results should be useful to them in their treatment of cancer patients by the method of electromagnetic hyperthermia.
  • loading
  • [1]
    Nikiforov V N. Magnetic induction hyperthermia[J]. Russian Phys J, 2007, 50(9): 913-924. doi: 10.1007/s11182-007-0133-1
    [2]
    Jordan A, Wust P, Scholz R, Tesche B, Fahling H, Mitrovics T, Vogl T, Carvos-navarro J, Felix R. Cellular uptake of magnetic fluid particles and their effects on human adenocarcinoma cells exposed to AC magnetic fields in vitro[J]. Int J Hyperthemia, 1996, 12(6) :705-722. doi: 10.3109/02656739609027678
    [3]
    Fiorentini G, Szasz S. Hyperthermia today: electric energy, a new opportunity in cancer treatment[J]. J Cancer Res Ther, 2006, 2(2): 41-46. doi: 10.4103/0973-1482.25848
    [4]
    Higashi T, Yamagishi A, Takeuchi T, Kawaguchi N, Sagawa S, Onishi S, Date M. Orientation of erythrocytes in a strong static magnetic field[J]. J Blood, 1993, 82 (4): 1328-1334.
    [5]
    Gasparovic C, Matweiyoff N A. The magnetic properties and water dynamics of the red blood cell[J]. Magn Reson Med, 1992, 26(2): 274-299. doi: 10.1002/mrm.1910260208
    [6]
    Higashi T, Ashida N, Takeuchi T. Orientation of blood cells in static magnetic field[J]. Physica B, 1997, 237/238: 616-620. doi: 10.1016/S0921-4526(97)00276-7
    [7]
    Pauling L, Coryell C D. The magnetic properties and structure of hemoglobin, oxyhemoglobin and carbonmonoxy hemoglobin[J]. Proc Natl Acad Sci(USA), 1936, 22: 210-216. doi: 10.1073/pnas.22.4.210
    [8]
    Motta M, Haik Y, Gandhari A, Chen C J. High magnetic field effects on human deoxygenated hemoglobin light absorption[J]. Bioelectrochem Bioengerg, 1998, 47(2) :297-300. doi: 10.1016/S0302-4598(98)00165-2
    [9]
    Bartoszek M, Drzazge Z. A study of magnetic anisotropy of blood cells[J]. J Magn Magn Mater, 1999,196/197(1): 573-575. doi: 10.1016/S0304-8853(98)00838-5
    [10]
    Haik Y, Pai V, Chen C J. Development of magnetic device for cell separation[J]. J Magn Magn Mater, 1999, 194 (1/3) :254-261. doi: 10.1016/S0304-8853(98)00559-9
    [11]
    Voltairas P A, Fotiadis D I, Michalis L K. Hydrodynamics of magnetic drug targeting[J]. J Biomech, 2002, 35: 813-821. doi: 10.1016/S0021-9290(02)00034-9
    [12]
    Ruuge E K, Rusetski A N. Magnetic fluids as drug carriers: Targeted transport of drugs by a magnetic field[J]. J Magn Magn Mater, 1993, 122(1/3): 335-339. doi: 10.1016/0304-8853(93)91104-F
    [13]
    Badescou V, Rotariu O, Murariu V, Rezlescu N. Transverse high gradient magnetic filter cell with bounded flow field[J]. IEEE Trans Magn, 1997, 33(6) :4439-4444. doi: 10.1109/20.649878
    [14]
    Andra W, Nowak H. Magnetism in Medicine[M]. Berlin :Wiley VCH, 1998.
    [15]
    Plavins J, Lauva M. Study of colloidal magnetite binding erythrocytes: prospects for cell separation[J]. J Magn Magn Mater, 1993, 122 (1/3): 349-353. doi: 10.1016/0304-8853(93)91107-I
    [16]
    Berkovski B, Bashtovoy V. Magnetic Fluids and Applications Handbook[M].New York: Begell House Inc, 1996.
    [17]
    Blums E, Cebers A, Maiorov M M. Magnetic Fluids[M]. Berlin: Walter de Gruyter, 1997.
    [18]
    Neuringer J L, Rosensweig R E. Ferrohydrodynamics[J]. Physics of Fluids, 1964,7: 1927-1937. doi: 10.1063/1.1711103
    [19]
    Rosensweig R E. Ferrohydrodynamics [M]. Cambridge: Cambridge University Press, 1985.
    [20]
    Rosensweig R E. Magnetic fluids[J]. Annual Review of Fluid Mechanics, 1987, 19: 437-463. doi: 10.1146/annurev.fl.19.010187.002253
    [21]
    Haik Y, Pai V M,Chen C J. Biomagnetic fluid dynamics[C]Shyy W, Narayanan R. Fluid Dynamics at Interfaces. Cambridge: Cambridge University Press,1999: 439-452.
    [22]
    Tzirtzilakis E E, Kafoussias N G. Biomagnetic fluid flow over a stretching sheet with non-linear temperature dependent magnetization[J]. J Appl Math Phys, ZAMP, 2003, 54: 551-565. doi: 10.1007/s00033-003-1100-5
    [23]
    Tzirtzilakis E E, Xenos M, Loukopoulos V C, Kofoussias N G. Turbulent biomagnetic fluid flow in a rectangular channel under the action of a localized magnetic field[J]. Int J Engg Sci, 2006, 44(18/19):1205-1224. doi: 10.1016/j.ijengsci.2006.07.005
    [24]
    Andersson H I, Valnes O A. Flow of a heated ferrofluid over a stretching sheet in the presence of magnetic dipole[J]. Acta Mech, 1998, 128(1/2): 39-47. doi: 10.1007/BF01463158
    [25]
    Fukada E, Kaibara M. Viscoelastic study of aggregation of red blood cells[J].Biorheology, 1980, 17(1/2): 177-182.
    [26]
    Thurston G B. Viscoelasticity of human blood[J]. Biophysical J, 1972, 12(9): 1205-1217. doi: 10.1016/S0006-3495(72)86156-3
    [27]
    Stoltz J F, Lucius M. Viscoelasticity and thixotropy of human blood[J]. Biorheology, 1981, 18 (3/6): 453-473.
    [28]
    Misra J C, Shit G C. Biomagnetic viscoelastic fluid flow over a stretching sheet[J]. Appl Math Comput, 2009, 210 (2): 350-361. doi: 10.1016/j.amc.2008.12.088
    [29]
    Misra J C, Shit G C. Flow of a biomagnetic visco-elastic fluid in a channel with stretching walls[J]. Trans ASME J Appl Mech, 2009, 76 (6): 061006-1. doi: 10.1115/1.3130448
    [30]
    Misra J C, Shit G C, Rath H J. Flow and heat transfer of a MHD viscoelastic fluid in a channel with stretching walls: some applications to hemodynamics[J]. Computers and Fluids, 2008, 37: 1-11. doi: 10.1016/j.compfluid.2006.09.005
    [31]
    Misra J C, Pal B, Gupta A S. Hydromagnetic flow of second-grade fluid in a channel: some applications to physiological systems[J]. Math Model and Methods in Appl Sci, 1998, 8(8):1323-1342. doi: 10.1142/S0218202598000627
    [32]
    Pal B, Misra J C, Pal A, Gupta A S. Hydromagnetic flow of a viscoelastic fluid in a parallel plate channel with stretching walls[J]. Ind J Maths, 1999, 41: 231-247.
    [33]
    Dunn J E, Fosdick R L. Thermodynamics, stability and boundedness of fluids of complexity 2 and fluids of second grade[J]. Arch Rational Mech Anal, 1974,56(3): 119-252.
    [34]
    Fosdick R L, Rajagopal K R. Anomalous features in the model of “second order fluids”[J]. Arch Rational Mech Anal, 1978, 70(2):145-152.
    [35]
    Schakenraad J M, Lam K G. The influence of porosity and surface roughness on biocompatibility[C] Zilla P. Tissue Eng Vascular Prosthetic Grafts. Austin: Landes Bioscience, 1999.
    [36]
    Siddinqui A M, Schwarz W H. Peristaltic flow of a second order fluid in tubes[J]. J Non-Newtonian Fluid Mech, 1994, 53: 257-284. doi: 10.1016/0377-0257(94)85052-6
    [37]
    Varshney C L. The fluctuating flow of a viscous fluid through a porous medium bounded by a porous and horizontal surface[J]. Indian J Pure Appl Math, 1979, 10: 1558-1564.
    [38]
    Raptis A, Perdikis C. Flow of a viscous fluid through a porous medium bounded by a vertical surface[J]. Int J Eng Sci, 1983, 21(11): 1327-1330. doi: 10.1016/0020-7225(83)90130-1
    [39]
    Hayat T, Qureshi M U, Hussain Q. Effect of heat transfer on the peristaltic flow of an electrically conducting fluid in a porous space[J]. Appl Math Modelling, 2009, 33(4): 1862-1873. doi: 10.1016/j.apm.2008.03.024
    [40]
    Sacheti N C. Application of Brinkman model in viscous incompressible flow through a porous channel[J]. J Math Phys Sci, 1983, 17: 567-577.
    [41]
    Tzirtzilakis E E, Tanoudis G B. Numerical study of biomagnetic fluid flow over a stretching sheet with heat transfer[J]. Int J Numer Methods Heat Fluid Flow, 2003, 13(7): 830-848. doi: 10.1108/09615530310502055
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1786) PDF downloads(1067) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return