HOU Xiu-hui, DENG Zi-chen, ZHOU Jia-xi. Symplectic Analysis for Wave Propagation in One-Dimensional Nonlinear Periodic Structures[J]. Applied Mathematics and Mechanics, 2010, 31(11): 1297-1307. doi: 10.3879/j.issn.1000-0887.2010.11.004
Citation: HOU Xiu-hui, DENG Zi-chen, ZHOU Jia-xi. Symplectic Analysis for Wave Propagation in One-Dimensional Nonlinear Periodic Structures[J]. Applied Mathematics and Mechanics, 2010, 31(11): 1297-1307. doi: 10.3879/j.issn.1000-0887.2010.11.004

Symplectic Analysis for Wave Propagation in One-Dimensional Nonlinear Periodic Structures

doi: 10.3879/j.issn.1000-0887.2010.11.004
  • Received Date: 1900-01-01
  • Rev Recd Date: 2010-10-01
  • Publish Date: 2010-11-15
  • The wave propagation problem in nonlinear periodic mass-spring structure chain was analyzed using the symplectic mathematical method. Firstly the energy method was applied to construct the dynamical equation and then the nonlinear dynamical equation was linearized using the small parameter perturbation method. The eigen-solutions of the symplectic matrix were applied to analyze the wave propagation problem in nonlinear periodic lattices. Nonlinearity in the mass-spring chain,arising from the nonlinear spring stiffness effect,has profound effects on the overall transmission of the chain. The wave propagation characteristics are not only altered due to the nonlinearity but also related with the incident wave intensity, which is a genuine nonlinear effect that is not present in the corresponding linear model. Numerical results show how the increase of nonlinearity or incident wave amplitude leads to a closing of the transmitting gaps. Comparison with the normal recursive approach demonstrates the effectiveness and superiority of the symplectic method in wave propagation problem for nonlinear periodic structures.
  • loading
  • [1]
    Mead D M. Wave propagation in continuous periodic structures: research contributions from southampton, 1964-1995[J]. Journal of Sound and Vibration, 1996, 190(3): 495-524. doi: 10.1006/jsvi.1996.0076
    [2]
    Yan Z Z,Wang Y S. Calculation of band structures for surface waves in two-dimensional phononic crystals with a wavelet-based method[J]. Physical Review B(Condensed Matter and Materials Physics), 2008, 78(9): 4306-4316.
    [3]
    Jensen J S. Phononic band gaps and vibrations in one- and two-dimensional mass-spring structures[J]. Journal of Sound and Vibration, 2003, 266(5): 1053-1078. doi: 10.1016/S0022-460X(02)01629-2
    [4]
    Zhang Y P, Wu B. Composition relation between gap solitons and Bloch waves in nonlinear periodic systems[J]. Physical Review Letters, 2009, 102(9): 3905-3908.
    [5]
    刘志芳, 王铁锋, 张善元. 梁中非线性弯曲波传播特性的研究[J]. 力学学报, 2007, 39(2): 238-244.
    [6]
    Yagi D, Kawahara T. Strongly nonlinear envelope soliton in a lattice model for periodic structure[J]. Wave Motion, 2001, 34(1): 97-107. doi: 10.1016/S0165-2125(01)00062-2
    [7]
    Richoux O, Depollier C, Hardy J. Propagation of mechanical waves in a one-dimensional nonlinear disordered lattice[J]. Physical Review E, 2006, 73(2): 6611-6621.
    [8]
    Marathe A, Chatterjee A. Wave attenuation in nonlinear periodic structures using harmonic balance and multiple scales[J]. Journal of Sound and Vibration, 2006, 289(4/5): 871-888. doi: 10.1016/j.jsv.2005.02.047
    [9]
    Georgiou I T, Vakakis A F. An invariant manifold approach for studying waves in a one-dimensional array of non-linear oscillators[J]. International Journal of Non-Linear Mechanics, 1996, 31(6): 871-886. doi: 10.1016/S0020-7462(96)00104-7
    [10]
    Romeo F, Rega G. Wave propagation properties in oscillatory chains with cubic nonlinearities via nonlinear map approach[J]. Chaos, Solitons & Fractals, 2006, 29(3): 606-617.
    [11]
    钟万勰. 应用力学的辛数学方法[M].北京:高等教育出版社, 2006.
    [12]
    Zhong W X, Williams F W, Leung A Y T. Symplectic analysis for periodical electro-magnetic waveguides[J]. Journal of Sound and Vibration, 2003, 267(2): 227-244. doi: 10.1016/S0022-460X(02)01451-7
    [13]
    冯康, 秦孟兆. 哈密尔顿系统的辛几何算法[M].杭州:浙江科学技术出版社, 2002.
    [14]
    Feng K. On difference schemes and symplectic geometry[C]Proceeding of the 1984 Beijing symposium on D D. Beijing: Science Press, 1984.
    [15]
    张素英, 邓子辰. 非线性动力学系统的几何积分理论及应用[M].西安:西北工业大学出版社, 2005.
    [16]
    Elmaimouni L, Lefebvre J E, Zhang V, Gryba T. A polynomial approach to the analysis of guided waves in anisotropic cylinders of infinite length[J]. Wave Motion, 2005, 42(2): 177-189. doi: 10.1016/j.wavemoti.2005.01.005
    [17]
    Wu C J, Chen H L, Huang X Q. Sound radiation from a finite fluid-filled/submerged cylindrical shell with porous material sandwich[J]. Journal of Sound and Vibration, 2000, 238(3): 425-441. doi: 10.1006/jsvi.2000.3086
    [18]
    Bridges T J. Multi-symplectic structures and wave propagation[J]. Mathematical Proceedings of the Cambridge Philosophical Society, 1997, 121(1): 147-190. doi: 10.1017/S0305004196001429
    [19]
    Reich S. Multi-symplectic Runge-Kutta collocation method for Hamiltonian wave equations[J]. Journal of Computational Physics, 2000, 157(2): 473-499. doi: 10.1006/jcph.1999.6372
    [20]
    Marsden J E, Pekarsky S, Shkoller S, West M. Variational methods, multisymplectic geometry and continuum mechanics[J]. Journal of Geometry and Physics, 2001, 38(3/4): 253-284. doi: 10.1016/S0393-0440(00)00066-8
    [21]
    Williams F W, Zhong W X, Bennett P N. Computation of the eigenvalues of wave propagation in periodic substructural systems[J]. Journal of Vibration and Acoustics, 1993, 115(4): 422-426. doi: 10.1115/1.2930367
    [22]
    Zhou M, Zhong W X, Williams F W. Wave propagation in substructural chain-type structures excited by harmonic forces[J]. International Journal of Mechanical Sciences, 1993, 35(11): 953-964. doi: 10.1016/0020-7403(93)90032-P
    [23]
    张洪武, 姚征, 钟万勰. 界带分析的基本理论和计算方法[J]. 计算力学学报, 2006, 23(3): 257-263.
    [24]
    Zhang H W, Yao Z, Wang J B, Zhong W X. Phonon dispersion analysis of carbon nanotubes based on inter-belt model and symplectic solution method[J]. International Journal of Solids and Structures, 2007, 44(20): 6428-6449. doi: 10.1016/j.ijsolstr.2007.02.033
    [25]
    姚征, 张洪武, 王晋宝. 基于界带模型的碳纳米管声子谱的辛分析[J]. 固体力学学报, 2008, 29(1): 13-22.
    [26]
    Hennig D,Tsironis G P. Wave transmission in nonlinear lattices[J]. Physics Reports, 1999, 307(5/6): 333-432. doi: 10.1016/S0370-1573(98)00025-8
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2187) PDF downloads(830) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return