Citation: | YUAN Pei-xin, LI Yong-qiang. Study on Primary Resonance of Multi-Degree-of-Freedom Dynamic Systems With Strongly Non-Linearity Using the Homotopy Analysis Method[J]. Applied Mathematics and Mechanics, 2010, 31(10): 1229-1238. doi: 10.3879/j.issn.1000-0887.2010.10.010 |
[1] |
Melvin P J. On the construction of Poincaré-Lindstedt solutions: the nonlinear oscillator equation[J]. SIAM Journal on Applied Mathematics, 1977, 33(1): 161-194. doi: 10.1137/0133011
|
[2] |
Nayfeh A H. Perturbation Methods[M]. New York: John Wiley & Sons, 1973.
|
[3] |
Larionov G S, Khoang V T. The method of averaging in nonlinear dynamical problems occurring in the theory of viscoelasticity[J]. Polymer Mechanics, 1972, 8(1): 31-35.
|
[4] |
Kakutani T, Sugimoto N. Krylov-Bogoliubov-Mitropolsky method for nonlinear wave modulation[J]. Physics of Fluids, 1974, 17(8): 1617-1625. doi: 10.1063/1.1694942
|
[5] |
Cheung Y K, Chen S H, Lau S L. Modified Linstedt-Poincaré method for certain strongly nonlinear oscillators[J]. International Journal of Non-Linear Mechanics, 1991, 26(3): 367-378. doi: 10.1016/0020-7462(91)90066-3
|
[6] |
Pierre C, Dowell E H. A study of dynamic instability of plates by an extended incremental harmonic balance method[J]. Transactions of the ASME. Journal of Applied Mechanics, 1985, 52(3): 693-697. doi: 10.1115/1.3169123
|
[7] |
Andrianov I V, Danishevs’kyy V V, Awrejcewicz J. An artificial small perturbation parameter and nonlinear plate vibrations[J]. Journal of Sound and Vibration, 2005, 283(3): 561-571. doi: 10.1016/j.jsv.2004.04.041
|
[8] |
Karmishin A V, Zhukov A I, Kolosov V G. Methods of Dynamics Calculation and Testing for Thin-Walled Structures[M]. Moscow: Mashinostroyenie, 1990.
|
[9] |
Adomian G. A new approach to the heat equation—an application of the decomposition method[J]. Journal of Mathematical Analysis and Applications, 1986, 113(1): 202-209. doi: 10.1016/0022-247X(86)90344-6
|
[10] |
Liao S J. Beyond Perturbation: Introduction to the Homotopy Analysis Method[M]. Boca Raton: Chapman & Hall/CRC Press, 2003.
|
[11] |
Liao S J. A new branch of solutions of boundary-layer flows over an impermeable stretched plate[J]. International Journal of Heat Mass Transfer, 2005, 48(12): 2529-2539. doi: 10.1016/j.ijheatmasstransfer.2005.01.005
|
[12] |
Liao S J. An explicit totally analytic approximation of Blasius viscous flow problems[J]. International Journal of Non-Linear Mechanics, 1999, 34(4): 759-778. doi: 10.1016/S0020-7462(98)00056-0
|
[13] |
Liao S J. Series solutions of unsteady boundary-layer flows over a stretching flat plate[J]. Studies in Applied Mathematics, 2006, 117(3): 239-264. doi: 10.1111/j.1467-9590.2006.00354.x
|
[14] |
冯少东, 陈立群. Duffing简谐振子同伦分析法求解[J]. 应用数学和力学, 2009, 30(9): 1015-1020.
|
[15] |
Liao S J. An approximate solution technique which does not depend upon small parameters: a special example[J]. International Journal of Non-Linear Mechanics, 1995, 30(3): 371-380. doi: 10.1016/0020-7462(94)00054-E
|
[16] |
Liao S J. An approximate solution technique which does not depend upon small parameters (part 2): an application in fluid mechanics[J]. International Journal of Non-Linear Mechanics, 1997, 32(5):815-822. doi: 10.1016/S0020-7462(96)00101-1
|
[17] |
廖世俊.同伦分析方法:一种新的求解非线性问题的近似解析方法[J]. 应用数学和力学, 1998, 19(10): 885-890.
|
[18] |
Wen J M, Cao Z C. Sub-harmonic resonances of nonlinear oscillations with parametric excitation by means of the homotopy analysis method[J]. Physics Letters A, 2007, 371(5): 427-431. doi: 10.1016/j.physleta.2007.09.057
|
[19] |
Tan Y, Abbasbandy S. Homotopy analysis method for quadratic Riccati differential equation[J]. Communication Nonlinear Science and Numerical Simulation, 2008, 13(3): 539-546. doi: 10.1016/j.cnsns.2006.06.006
|
[20] |
Abbasbandy S. Approximate solution for the nonlinear model of diffusion and reaction in porous catalysts by means of the homotopy analysis method[J]. Chemical Engineering Journal, 2008, 136(2):144-150. doi: 10.1016/j.cej.2007.03.022
|
[21] |
李书, 王波, 胡继忠. 结构动力学逆特征值问题的同伦解法[J]. 应用数学和力学, 2004, 25(5): 529-534.
|
[22] |
Chen S H, Cheung Y K. A modified lindstedt-poincare method for a strongly nonlinear two degree-of- freedom system[J]. Journal of Sound and Vibration, 1996, 193(4): 751-762. doi: 10.1006/jsvi.1996.0313
|
[23] |
Cheung Y K, Chen S H, Lau S L. Application of incremental harmonic balance method to cubic non-linearity systems[J]. Journal of Sound and Vibration, 1990, 140(2): 273-286. doi: 10.1016/0022-460X(90)90528-8
|