YUAN Pei-xin, LI Yong-qiang. Study on Primary Resonance of Multi-Degree-of-Freedom Dynamic Systems With Strongly Non-Linearity Using the Homotopy Analysis Method[J]. Applied Mathematics and Mechanics, 2010, 31(10): 1229-1238. doi: 10.3879/j.issn.1000-0887.2010.10.010
Citation: YUAN Pei-xin, LI Yong-qiang. Study on Primary Resonance of Multi-Degree-of-Freedom Dynamic Systems With Strongly Non-Linearity Using the Homotopy Analysis Method[J]. Applied Mathematics and Mechanics, 2010, 31(10): 1229-1238. doi: 10.3879/j.issn.1000-0887.2010.10.010

Study on Primary Resonance of Multi-Degree-of-Freedom Dynamic Systems With Strongly Non-Linearity Using the Homotopy Analysis Method

doi: 10.3879/j.issn.1000-0887.2010.10.010
  • Received Date: 1900-01-01
  • Rev Recd Date: 2010-09-03
  • Publish Date: 2010-10-15
  • The homotopy analysis method (HAM) was presented for the primary resonance of multidegree-of-freedom system with strongly non-linearity excited by harmonic forces.The validity of the HAM is independent of whether or not there are small parameters in the considered equation.The HAM has provided a simple way to adjust and control the convergence region of the series solution by means of an auxiliary parameter h.Two examples were presented to show that the HAM solutions agree well with the results of the modified Linstedt-Poincarémethod and the incremental harmonic balance method.
  • loading
  • [1]
    Melvin P J. On the construction of Poincaré-Lindstedt solutions: the nonlinear oscillator equation[J]. SIAM Journal on Applied Mathematics, 1977, 33(1): 161-194. doi: 10.1137/0133011
    [2]
    Nayfeh A H. Perturbation Methods[M]. New York: John Wiley & Sons, 1973.
    [3]
    Larionov G S, Khoang V T. The method of averaging in nonlinear dynamical problems occurring in the theory of viscoelasticity[J]. Polymer Mechanics, 1972, 8(1): 31-35.
    [4]
    Kakutani T, Sugimoto N. Krylov-Bogoliubov-Mitropolsky method for nonlinear wave modulation[J]. Physics of Fluids, 1974, 17(8): 1617-1625. doi: 10.1063/1.1694942
    [5]
    Cheung Y K, Chen S H, Lau S L. Modified Linstedt-Poincaré method for certain strongly nonlinear oscillators[J]. International Journal of Non-Linear Mechanics, 1991, 26(3): 367-378. doi: 10.1016/0020-7462(91)90066-3
    [6]
    Pierre C, Dowell E H. A study of dynamic instability of plates by an extended incremental harmonic balance method[J]. Transactions of the ASME. Journal of Applied Mechanics, 1985, 52(3): 693-697. doi: 10.1115/1.3169123
    [7]
    Andrianov I V, Danishevs’kyy V V, Awrejcewicz J. An artificial small perturbation parameter and nonlinear plate vibrations[J]. Journal of Sound and Vibration, 2005, 283(3): 561-571. doi: 10.1016/j.jsv.2004.04.041
    [8]
    Karmishin A V, Zhukov A I, Kolosov V G. Methods of Dynamics Calculation and Testing for Thin-Walled Structures[M]. Moscow: Mashinostroyenie, 1990.
    [9]
    Adomian G. A new approach to the heat equation—an application of the decomposition method[J]. Journal of Mathematical Analysis and Applications, 1986, 113(1): 202-209. doi: 10.1016/0022-247X(86)90344-6
    [10]
    Liao S J. Beyond Perturbation: Introduction to the Homotopy Analysis Method[M]. Boca Raton: Chapman & Hall/CRC Press, 2003.
    [11]
    Liao S J. A new branch of solutions of boundary-layer flows over an impermeable stretched plate[J]. International Journal of Heat Mass Transfer, 2005, 48(12): 2529-2539. doi: 10.1016/j.ijheatmasstransfer.2005.01.005
    [12]
    Liao S J. An explicit totally analytic approximation of Blasius viscous flow problems[J]. International Journal of Non-Linear Mechanics, 1999, 34(4): 759-778. doi: 10.1016/S0020-7462(98)00056-0
    [13]
    Liao S J. Series solutions of unsteady boundary-layer flows over a stretching flat plate[J]. Studies in Applied Mathematics, 2006, 117(3): 239-264. doi: 10.1111/j.1467-9590.2006.00354.x
    [14]
    冯少东, 陈立群. Duffing简谐振子同伦分析法求解[J]. 应用数学和力学, 2009, 30(9): 1015-1020.
    [15]
    Liao S J. An approximate solution technique which does not depend upon small parameters: a special example[J]. International Journal of Non-Linear Mechanics, 1995, 30(3): 371-380. doi: 10.1016/0020-7462(94)00054-E
    [16]
    Liao S J. An approximate solution technique which does not depend upon small parameters (part 2): an application in fluid mechanics[J]. International Journal of Non-Linear Mechanics, 1997, 32(5):815-822. doi: 10.1016/S0020-7462(96)00101-1
    [17]
    廖世俊.同伦分析方法:一种新的求解非线性问题的近似解析方法[J]. 应用数学和力学, 1998, 19(10): 885-890.
    [18]
    Wen J M, Cao Z C. Sub-harmonic resonances of nonlinear oscillations with parametric excitation by means of the homotopy analysis method[J]. Physics Letters A, 2007, 371(5): 427-431. doi: 10.1016/j.physleta.2007.09.057
    [19]
    Tan Y, Abbasbandy S. Homotopy analysis method for quadratic Riccati differential equation[J]. Communication Nonlinear Science and Numerical Simulation, 2008, 13(3): 539-546. doi: 10.1016/j.cnsns.2006.06.006
    [20]
    Abbasbandy S. Approximate solution for the nonlinear model of diffusion and reaction in porous catalysts by means of the homotopy analysis method[J]. Chemical Engineering Journal, 2008, 136(2):144-150. doi: 10.1016/j.cej.2007.03.022
    [21]
    李书, 王波, 胡继忠. 结构动力学逆特征值问题的同伦解法[J]. 应用数学和力学, 2004, 25(5): 529-534.
    [22]
    Chen S H, Cheung Y K. A modified lindstedt-poincare method for a strongly nonlinear two degree-of- freedom system[J]. Journal of Sound and Vibration, 1996, 193(4): 751-762. doi: 10.1006/jsvi.1996.0313
    [23]
    Cheung Y K, Chen S H, Lau S L. Application of incremental harmonic balance method to cubic non-linearity systems[J]. Journal of Sound and Vibration, 1990, 140(2): 273-286. doi: 10.1016/0022-460X(90)90528-8
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1586) PDF downloads(277) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return