HOU Guo-lin, Alatancang. Symplectic Eigenfunction Expansion Theorem for the Rectangular Plane Elasticity Problems With Two Opposite Simply Supported[J]. Applied Mathematics and Mechanics, 2010, 31(10): 1181-1190. doi: 10.3879/j.issn.1000-0887.2010.10.005
Citation: HOU Guo-lin, Alatancang. Symplectic Eigenfunction Expansion Theorem for the Rectangular Plane Elasticity Problems With Two Opposite Simply Supported[J]. Applied Mathematics and Mechanics, 2010, 31(10): 1181-1190. doi: 10.3879/j.issn.1000-0887.2010.10.005

Symplectic Eigenfunction Expansion Theorem for the Rectangular Plane Elasticity Problems With Two Opposite Simply Supported

doi: 10.3879/j.issn.1000-0887.2010.10.005
  • Received Date: 1900-01-01
  • Rev Recd Date: 2010-09-03
  • Publish Date: 2010-10-15
  • The eigenvalue problem of the Hamiltonian operator associated with the plane elasticity problems was investigated.First, the eigenfunctions of the operator with the mixed boundary conditions for the displacement and stress in the rectangular region was solved directly.Then, the completeness of the eigenfunctions was proved, thereby demonstrating the feasibility of using separation of variables to solve the problems.Finally, the general solution was obtained by using the symplectic eigenfunction expansion theorem.
  • loading
  • [1]
    阿拉坦仓, 张鸿庆, 钟万勰. 矩阵多元多项式的带余除法及其应用[J].应用数学和力学, 2000, 21(7): 661-668.
    [2]
    阿拉坦仓, 张鸿庆, 钟万勰. 一类偏微分方程的Hamilton正则表示[J].力学学报, 1999, 31(3): 347-357.
    [3]
    陈勇, 郑宇, 张鸿庆. 一些数学物理问题中的Hamilton方程[J].应用数学和力学, 2003, 24(1): 19-24.
    [4]
    REN Wen-xiu, Alatancang. An algorithm and its application for obtaining some kind of infinite-dimensional Hamiltonian canonical formulation[J]. Chinese Physics, 2007, 16 (11): 3154-3160. doi: 10.1088/1009-1963/16/11/002
    [5]
    Vainberg M M. Variational Methods for the Study of Nonlinear Operators[M]. San Francisco: Holden-Day, 1964.
    [6]
    钟万勰. 弹性力学求解新体系[M]. 大连: 大连理工大学出版社, 1995.
    [7]
    Lim C W, Lü C F, Xiang Y, Yao W. On new symplectic elasticity approach for exact free vibration solutions of rectangular Kirchhoff plates [J]. Int J Eng Sci, 2009, 47 (1):131-140. doi: 10.1016/j.ijengsci.2008.08.003
    [8]
    Yao W, Zhong W X, Lim C W. Symplectic Elasticity[M]. Singapore:World Scientific Publishing, 2009.
    [9]
    HOU Guo-lin, Alatancang. On the feasibility of variable separation method based on Hamiltonian system for plane magnetoelectroelastic solids[J]. Chinese Physics B, 2008, 17(8): 2753-2758. doi: 10.1088/1674-1056/17/8/001
    [10]
    HOU Guo-lin, Alatancang. Completeness of eigenfunction systems for off-diagonal infinite-dimensional Hamiltonian operators[J]. Commun Theor Phys, 2010,53(2): 237-241. doi: 10.1088/0253-6102/53/2/06
    [11]
    Alatancang, Wu D Y. Completeness in the sense of Cauchy principal value of the eigenfunction systems of infinite dimensional Hamiltonian operator[J]. Sci China Ser A, 2009,52(1): 173-180.
    [12]
    Zou G. An exact symplectic geometry solution for the static and dynamic analysis of Reissner plates[J]. Comput Methods Appl Mech Engrg, 1998, 156(1/4): 171-178. doi: 10.1016/S0045-7825(97)00204-1
    [13]
    Zhong Y, Li R. Exact bending analysis of fully clamped rectangular thin plates subjected to arbitrary loads by new symplectic approach[J]. Mechanics Research Communications, 2009,36(6): 707-714. doi: 10.1016/j.mechrescom.2009.04.001
    [14]
    Elias M S, Rami Shakarchi. Fourier Analysis: An Introduction[M].Oxford: Princeton University Press, 2003.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2036) PDF downloads(1008) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return