Citation: | YANG Xiao, WEN Qun. Dynamic and Quasi-Static Bending of Saturated Poroelastic Timoshenko Cantilever Beam[J]. Applied Mathematics and Mechanics, 2010, 31(8): 949-960. doi: 10.3879/j.issn.1000-0887.2010.08.008 |
[1] |
Zhang D, Cowin S C. Oscillatory bending of a poroelastic beam[J]. Journal of the Mechanics and Physics of Solids, 1994, 42(10): 1575-1599. doi: 10.1016/0022-5096(94)90088-4
|
[2] |
Kameo Y, Adachi T, Hojo M. Transient response of fluid pressure in a poroelastic material under uniaxial cyclic loading[J]. Journal of the Mechanics and Physics of Solids, 2008, 56(5): 1794-1805. doi: 10.1016/j.jmps.2007.11.008
|
[3] |
Wang Z H, Prevost J H, Coussy O. Bending of fluid-saturated poroelastic beams with compressible constitutes[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2009, 33(4): 425-447. doi: 10.1002/nag.722
|
[4] |
Li L P, Schulgasser K, Cederbaum G. Theory of poroelastic beams with axial diffusion[J]. Journal of the Mechanics and Physics of Solids, 1995, 43(12): 2023-2042. doi: 10.1016/0022-5096(95)00056-O
|
[5] |
Li L P, Schulgasser K, Cederbaum G. Large deflection analysis of poroelastic beams[J]. International Journal of Non-Linear Mechanics, 1998, 33(1): 1-14. doi: 10.1016/S0020-7462(97)00003-6
|
[6] |
Cederbaum G, Schulgasser K, Li L P. Interesting behavior patterns of poroelastic beams and columns[J]. International Journal of Solids and Structures, 1998, 35(34): 4931-4943. doi: 10.1016/S0020-7683(98)00102-4
|
[7] |
Chakraborty A. Wave propagation in anisotropic poroelastic beam with axial-flexural coupling[J]. Computation Mechanics, 2009, 43(6):755-767. doi: 10.1007/s00466-008-0343-6
|
[8] |
WANG Zhi-hua, Pr′evost Jean H, Coussy Olivier. Bending of fluid-saturated linear poroelastic beams with compressible constituents[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2009, 33(4):425-447. doi: 10.1002/nag.722
|
[9] |
YANG Xiao, CHENG Chang-jun. Gurtin variational principle and finite element simulation for dynamical problems of fluid-saturated porous media[J]. Acta Mechanica Solida Sinica, 2003, 16(1): 24-32.
|
[10] |
YANG Xiao, HE Lu-wu. Variational principles of fluid-saturated incompressible porous media[J]. Journal of Lanzhou University, 2003, 39(6): 24-28.
|
[11] |
杨骁, 李丽. 不可压饱和多孔弹性梁、杆动力响应的数学模型[J]. 固体力学学报, 2006, 27(2): 159-166.
|
[12] |
杨骁, 王佩菁. 不可压流体饱和多孔弹性梁的变分原理及有限元方法[J]. 固体力学学报, 2009, 30(1): 54-60.
|
[13] |
杨晓,王琛. 不可压饱和多孔弹性梁的大桡度非线性数学模型[J]. 应用数学和力学, 2007, 28(12): 1417-1424.
|
[14] |
de Boer R. Theory of Porous Media: Highlights in the Historical Development and Current State[M]. Berlin, Heidelberg: Springer-Verlag, 2000.
|
[15] |
Timoshenko S, Young D N. Vibration Problems in Engineering[M]. Princeton, NY: Van Nostrand, 1955: 329-331.
|
[16] |
Han S M, Benaroya H, Weik T. Dynamics of transversely vibrating beams using four engineering theories[J]. Journal of Sound and Vibration, 1999, 225(5): 935-988. doi: 10.1006/jsvi.1999.2257
|
[17] |
Crump K S. Numerical inversion of Laplace transforms using a Fourier series approximation[J]. Journal of Association for Computing Machinery, 1976, 23(1): 89-96. doi: 10.1145/321921.321931
|
[18] |
Abbas I. Natural frequencies of a poroelastic hollow cylinder[J]. Acta Mechanics, 2006, 186(1/4): 229-237. doi: 10.1007/s00707-006-0314-y
|