Rebhi A. Damseh, Ben Bella A. Shannak. Visco-Elastic Fluid Flow Past an Infinite Vertical Porous Plate in the Presence of First Order Chemical Reaction[J]. Applied Mathematics and Mechanics, 2010, 31(8): 909-916. doi: 10.3879/j.issn.1000-0887.2010.08.003
Citation: Rebhi A. Damseh, Ben Bella A. Shannak. Visco-Elastic Fluid Flow Past an Infinite Vertical Porous Plate in the Presence of First Order Chemical Reaction[J]. Applied Mathematics and Mechanics, 2010, 31(8): 909-916. doi: 10.3879/j.issn.1000-0887.2010.08.003

Visco-Elastic Fluid Flow Past an Infinite Vertical Porous Plate in the Presence of First Order Chemical Reaction

doi: 10.3879/j.issn.1000-0887.2010.08.003
  • Received Date: 1900-01-01
  • Rev Recd Date: 2010-05-20
  • Publish Date: 2010-08-15
  • An analys is was developed in order to study the unsteady free convection flow of an incompressible, visco-elastic fluid on a continuously moving vertical porous plate in the presence of a firs-torder chemical reaction. The governing equations were solvednumerically using an implicit finite difference technique. The selected numerical method was validated by comparing the results with the analytical solutions. Numerical results for the details of the velocity profiles which were shown on graphs were presented. A parametric study was performed to illustrate the in fluence of the visco-elastic parameter, dmiension less chemical reaction parameter and plate moving velocity on the steady state velocity profiles, the tmie dependent friction coefficient, Nusselt number and Sherwood number.
  • loading
  • [1]
    Sakiadis B C. Boundary layer behavior on continuous solid surfaces—Ⅱ: the boundary layer on a continuous flat surface[J]. Amer Inst Chem Engrg J, 1961, 7(2): 221-225. doi: 10.1002/aic.690070211
    [2]
    Crane L J. Flow past a stretching plate[J]. Z Angew Math Phys, 1970, 21(4): 445-447.
    [3]
    Carragher P, Crane L J. Heat transfer on a continuously moving sheet[J]. Z Angew Math Mech, 1982, 62(10): 564-565. doi: 10.1002/zamm.19820621009
    [4]
    Beard D W, Walters K. Elastico-viscous boundary layer flow—Ⅰ: two dimensional flow near a stagnation point[C]. Mathematical Proceedings of the Cambridge Philosophical Society. Cambridge: Cambridge University Press, 1964, 60: 667-674.
    [5]
    Rajagopal K R. On Stokes’ problem for a non-Newtonian fluid[J]. Acta Mechanica, 1983, 48(3/4): 233-239. doi: 10.1007/BF01170422
    [6]
    Dandpath B S, Gupta A S. Flow and heat transfer in a viscoelastic fluid over a stretching shell[J]. Int J Non-Linear Mech, 1989, 24(3): 215-219. doi: 10.1016/0020-7462(89)90040-1
    [7]
    Teipel L. The impulsive motion of a flat plate in a visco-elastic fluid[J]. Acta Mechanica, 1981, 39(3/4): 277-279. doi: 10.1007/BF01170349
    [8]
    Panda J, Roy J S. Harmonically oscillating visco-elastic boundary layer flow[J]. Acta Mechanica, 1979, 31(3/4): 213-220. doi: 10.1007/BF01176849
    [9]
    Damseh Rebhi A, Al-Azab Tariq A, Al-Odat M Q. Unsteady free convection flow of visco-elastic fluid on a stretched vertical plate embedded in a non-Darcian porous medium with constant heat flux[J]. Journal of Porous Media, 2008, 11(1): 117-124. doi: 10.1615/JPorMedia.v11.i1.80
    [10]
    Damseh Rebhi A, Shatanawi A S, Chamkha A J, Duwairi H M. Transient mixed convection flow of a second-grade visco-elastic fluid over a vertical surface[J]. Nonlinear Analysis Modling and Control, 2008, 13(2): 169-179.
    [11]
    Shawaqfah M S, Damseh R A, Chamkha A J, Duwairi H M, Zgoul M H. Forced convection of blasius flow of “second-grade” vcisco-elastic fluid[J]. International Journal of Heat &Technology, 2007, 25(1): 145-151.
    [12]
    Chamkha A J. MHD flow of a uniformly stretched vertical permeable surface in the presence of heat generation/absorption and a chemical reaction[J]. Int Comm Heat and Mass Transfer, 2003, 30(3): 413-422. doi: 10.1016/S0735-1933(03)00059-9
    [13]
    Kandasamy R, Periasamy K, Prabhu K K Sivagnana. Chemical reaction, heat and Mass transfer on MHD flow over a vertical stretching surface with heat source and thermal stratification effects[J]. Int J of Heat and Mass Transfer, 2005, 48(21/22): 4557-4561. doi: 10.1016/j.ijheatmasstransfer.2005.05.006
    [14]
    Kandasamy R, Periasamy K, Prabhu K K Sivagnana. Effects of chemical reaction, heat and mass transfer along a wedge with heat source and concentration in the presence of suction or injection[J]. Int J of Heat and Mass Transfer, 2005, 48(7): 1388-1394. doi: 10.1016/j.ijheatmasstransfer.2004.10.008
    [15]
    Siddheshwar Pradeep G, Manjunath S. Unsteady convective diffusion with heterogeneous chemical reaction in a plane-poiseuille flow of a micropolar fluid[J]. Int J of Eng Science, 2000, 38(7): 765-783. doi: 10.1016/S0020-7225(99)00040-3
    [16]
    Mitrovic Bojan M, Papavassiliou Dimitrios V. Effects of a first-order chemical reaction on turbulent mass transfer[J]. Int J of Heat and Mass Transfer, 2004, 47(1): 34-61.
    [17]
    Chen Zheng, Arce Pedro. An integral-spectral approach for convective-diffusive mass transfer with chemical reaction in Couette flow mathematical formulation and numerical illustrations[J]. Chemical Engineering Journal, 1997, 68(1): 11-27. doi: 10.1016/S1385-8947(97)00049-1
    [18]
    Muthukumaraswamy R, Ganesan P. Natural convection on a moving isothermal vertical plate with chemical reaction[J]. Journal of Engineering Physics and Thermophysics, 2002, 75(1): 113-119. doi: 10.1023/A:1014826924926
    [19]
    Muthukumaraswamy R, Ganesan P. Effect of the chemical reaction and injection on flow characteristics in an unsteady upward motion of an isothermal plate[J]. Journal of Applied Mechanics and Technical Physics, 2001, 42(4): 665-671. doi: 10.1023/A:1019259932039
    [20]
    Anjalidevi S P, Kandasamy R. Effects of chemical reaction, heat and mass transfer on laminar flow along a semi infinite horizontal plate[J]. Heat and Mass Transfer, 1999, 35(6): 465-467. doi: 10.1007/s002310050349
    [21]
    Cortell Rafael. Similarity solutions for flow and heat transfer of a viscoelsatic fluid over a stretching sheet[J]. Int J Non-Linear Mech, 1994, 29(2): 155-161. doi: 10.1016/0020-7462(94)90034-5
    [22]
    Kyvan S, Hadi H, Seyed T. Stagnation-point flow of upper-convected Maxwell fluids[J]. Int J Non-Linear Mech, 2006, 41(10): 1242-1247. doi: 10.1016/j.ijnonlinmec.2006.08.005
    [23]
    Anderson J. Computational Fluid Dynamics[M]. Chap 9. New York: McGraw-Hill, 1995.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1719) PDF downloads(794) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return