ZHANG Shi-sheng, LEE Joseph H W, CHAN Chi-kin. Quadratic Minimization for Equilibrium Problem Variational Inclusion and Fixed Point Problem[J]. Applied Mathematics and Mechanics, 2010, 31(7): 874-883. doi: 10.3879/j.issn.1000-0887.2010.07.013
Citation: ZHANG Shi-sheng, LEE Joseph H W, CHAN Chi-kin. Quadratic Minimization for Equilibrium Problem Variational Inclusion and Fixed Point Problem[J]. Applied Mathematics and Mechanics, 2010, 31(7): 874-883. doi: 10.3879/j.issn.1000-0887.2010.07.013

Quadratic Minimization for Equilibrium Problem Variational Inclusion and Fixed Point Problem

doi: 10.3879/j.issn.1000-0887.2010.07.013
  • Received Date: 1900-01-01
  • Rev Recd Date: 2010-05-30
  • Publish Date: 2010-07-15
  • The purpose was by using the resolvent approach to find the solutions to the quad-raticminimization problem: minx∈Ω||x||2, where Ω was the intersection set of the set of solutions to some generalized equilibrium problem, the set of common fixed points for an infinite family of nonexpansive mappings and the set of solutions to some variational in clusions in the setting of Hilbert spaces. Under suitable conditions some new strong convergence theorems for approximating to a solution of the above minimization problem were proved.
  • loading
  • [1]
    Noor M A, Noor K I. Sensitivity analysis of quasi variational inclusions[J].J Math Anal Appl, 1999, 236(2):290-299. doi: 10.1006/jmaa.1999.6424
    [2]
    Chang S S. Set-valued variational inclusions in Banach spaces[J].J Math Anal Appl, 2000, 248(2): 438-454. doi: 10.1006/jmaa.2000.6919
    [3]
    Chang S S. Existence and approximation of solutions of set-valued variational inclusions in Banach spaces[J]. Nonlinear Anal, 2001, 47(1): 583-594. doi: 10.1016/S0362-546X(01)00203-6
    [4]
    Demyanov V F, Stavroulakis G E, Polyakova L N, Panagiotopoulos P D.Quasidifferentiability and Nonsmooth Modeling in Mechanics, Engineering and Economics[M].Dordrecht: Kluwer Academic, 1996.
    [5]
    Noor M A.Generalized set-valued variational inclusions and resulvent equations[J].J Math Anal Appl, 1998, 228(1): 206-220. doi: 10.1006/jmaa.1998.6127
    [6]
    Hartman P, Stampacchia G. On some nonlinear elliptic differential equations[J].Acta Math, 1966, 115(1): 271-310. doi: 10.1007/BF02392210
    [7]
    Browder F E, Petryshyn W V. Construction of fixed points of nonlinear mappings in Hilbert space[J].J Math Anal Appl, 1967, 20: 197-228. doi: 10.1016/0022-247X(67)90085-6
    [8]
    Iiduka H, Takahashi W, Toyoda M. Approximation of solutions of variational inequalities for monotone mappings[J]. Pan-Amer Math J, 2004, 14: 49-61.
    [9]
    张石生,李向荣,陈志坚.拟变分包含及不动点问题公解的算法[J].应用数学和力学,2008, 29(5): 515-524.
    [10]
    Blum E, Oettli W. From optimization and variational inequalities problems[J].Math Stud, 1994, 63: 123-145.
    [11]
    Bruck R E. Properties of fixed point sets of nonexpansive mappings in Banach spaces[J]. Trans Amer Math Soc, 1973, 179: 251-262. doi: 10.1090/S0002-9947-1973-0324491-8
    [12]
    Suzuki T. Strong convergence theorems for infinite families of nonexpansive mappings in general Banach spaces[J]. Fixed Point Theory Appl, 2005, 2005(1): 103-123.
    [13]
    Pascali Dan. Nonlinear Mappings of Monotone Type[M].The Netherlands: Sijthoff and Noordhoff International Publishers, 1978.
    [14]
    Goebel K, Kirk W A.Topics in Metric Fixed Point Theory,in Cambridge Studies in Advanced Mathematics[M]. 28. Cambridge: Cambridge University Press, 1990.
    [15]
    Combettes P L, Hirstoaga S A. Equilibrium programming in Hilbert spaces[J].J Nonlinear Convex Anal, 2005, 6: 117-136.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1776) PDF downloads(725) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return