LAI Geng, SHENG Wan-cheng. Simple Waves for Two-Dimensional Pseudo-Steady Compressible Euler System[J]. Applied Mathematics and Mechanics, 2010, 31(7): 791-800. doi: 10.3879/j.issn.1000-0887.2010.07.004
Citation: LAI Geng, SHENG Wan-cheng. Simple Waves for Two-Dimensional Pseudo-Steady Compressible Euler System[J]. Applied Mathematics and Mechanics, 2010, 31(7): 791-800. doi: 10.3879/j.issn.1000-0887.2010.07.004

Simple Waves for Two-Dimensional Pseudo-Steady Compressible Euler System

doi: 10.3879/j.issn.1000-0887.2010.07.004
  • Received Date: 1900-01-01
  • Rev Recd Date: 2010-05-27
  • Publish Date: 2010-07-15
  • A simple wave was defined as a flow in a region whose image is a curve in phase space. It is well known that "the theory of smiple waves is fundamental in building up the solutions of flow problems out of elementary flow patterns". Geometric construction of simple waves for the 2D pseudo-steady compressible Euler system were mainly concerned with. Based on the geometric in terpretation the expansion or compress ion smiple wave flow construction around a pseudo-stream line with a bend part was constructed. It is a building block which appears in the global solution to four contact discontinuities Riemann problems.
  • loading
  • [1]
    Li J, Zhang T, Yang S. The Two-Dimensional Riemann Problem in Gas Dynamics[M]. London: Addison Wesley Longman Limited, 1998.
    [2]
    Zhang T, Zheng Y. Conjecture on the structure of solution of the Riemann problem for two-dimensional gas dynamics system[J]. SIAM J. Math Anal, 1990, 21(3): 593-630. doi: 10.1137/0521032
    [3]
    Zheng Y. Systems of Conservation Laws: Two-Dimensional Riemann Problems[M]. Boston: 38 PNLDE, Bkhuser, 2001.
    [4]
    John F.Partial Differential Equations[M]. New York: Springer-Verlag, 1982.
    [5]
    Courant R, Friedrichs K O. Supersonic Flow and Shock Waves[M]. New York: Interscience, 1948.
    [6]
    Li J, Zhang T, Zheng Y. Simple waves and a characteristic decomposition of the two dimensional compressible Euler equations[J]. Commu Math Phys, 2006, 267(1): 1-12 . doi: 10.1007/s00220-006-0033-1
    [7]
    Bang S. Rarefaction Wave Interaction of Pressure Gradient System[M]. State college: Pennsylvania State University, 2007.
    [8]
    Dai Z, Zhang T.Existence of a global smooth solution for a degenerate Goursat problem of gas dynamics[J]. Arch Ration Mech Anal, 2000,155(4): 277-298. doi: 10.1007/s002050000113
    [9]
    Lei Z, Zheng Y.A complete global solution to the pressure gradient equation[J]. J Differential Equations, 2007, 236(1): 280-292. doi: 10.1016/j.jde.2007.01.024
    [10]
    Song K, Zheng Y. Semi-Hyperbolic patches of solutions of the pressure gradient system[J]. Discrete and Continuous Dynamic System, 2009, 24(4): 1365-1380. doi: 10.3934/dcds.2009.24.1365
    [11]
    Li J. On the two-dimensional gas expansion for the compressible Euler equations[J]. SIAM J Appl Math, 2002, 62(3): 831-852. doi: 10.1137/S0036139900361349
    [12]
    Li J. Global solutions of an initial value problem for two-dimensional compressible Euler equations[J].J Diff Equs, 2002, 179(1): 178-194. doi: 10.1006/jdeq.2001.4025
    [13]
    Li J, Zheng Y. Interaction of rarefaction waves of the two-dimensional self-similar Euler equations[J]. Arch Rat Mech Anal, 2009, 193(3): 623-657. doi: 10.1007/s00205-008-0140-6
    [14]
    Chang T, Chen G, Yang S. On the 2-D Riemann problem for the compressible Euler equation, Ⅱ. Interaction of contact discontinuities[J]. Discrete and Continuous Dynamical Systems, 2000, 6(2): 419-430. doi: 10.3934/dcds.2000.6.419
    [15]
    Glimm J, Ji X, Li J, Li X, Zhang P, Zhang T, Zheng Y.Transonic shock formation in a rarefaction Riemann problem for the 2-D compressible Euler Equations[J]. SIAM J Appl Math, 2008, 69(3): 720-742. doi: 10.1137/07070632X
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1900) PDF downloads(881) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return