XU Run-zhang, XU Chuang. Nonlinear Schrdinger Equation With Combined Power-Type Nonlinearities and Harmonic Potential[J]. Applied Mathematics and Mechanics, 2010, 31(4): 491-498. doi: 10.3879/j.issn.1000-0887.2010.04.011
Citation: XU Run-zhang, XU Chuang. Nonlinear Schrdinger Equation With Combined Power-Type Nonlinearities and Harmonic Potential[J]. Applied Mathematics and Mechanics, 2010, 31(4): 491-498. doi: 10.3879/j.issn.1000-0887.2010.04.011

Nonlinear Schrdinger Equation With Combined Power-Type Nonlinearities and Harmonic Potential

doi: 10.3879/j.issn.1000-0887.2010.04.011
  • Received Date: 1900-01-01
  • Rev Recd Date: 2010-03-12
  • Publish Date: 2010-04-15
  • A class of nonlinear SchrLdinger equations with combined power-type nonlinearities and harmonic potential are discussed.By constructing a variational problem the potential well method is applied.The structure of the potential well and the properties of depth function are given.The invariance of some sets for the problem is shown.It is proven that if the initial data are in the potential well or out of it,the solutions will lie either in the potential well or out of it respectively.By convexity method,the sharp condition of the global well-posedness is given.
  • loading
  • [1]
    ZHANG Jian. Sharp conditions of global existence for nonlinear Schrdinger and Klein-Gordon equations[J]. Nonlinear Analysis, 2002, 48(2):191-207. doi: 10.1016/S0362-546X(00)00180-2
    [2]
    Ginibre J,Velo G. On a class of nonlinear Schrdinger equations[J].Journal of Functional Analysis, 1979, 32(1):1-71. doi: 10.1016/0022-1236(79)90076-4
    [3]
    Glassey R T. On the blowing up of solutions to the Cauchy problem for nonlinear Schrdinger equations[J]. Journal of Mathematical Phisics, 1977, 18(9):1794-1797. doi: 10.1063/1.523491
    [4]
    Ogawa T, Tsutsumi Y. Blow-up of H1 solution for the nonlinear Schrdinger equation[J]. Journal of Differential Equations, 1991, 92(2):317-330. doi: 10.1016/0022-0396(91)90052-B
    [5]
    Ogawa T, Tsutsumi Y. Blow-up of H1 solution for the nonlinear Schrdinger equation with critical power nonlinearity[J]. Proceedings of the American Mathematical Society, 1991, 111(2):487-496.
    [6]
    Kenig C, Ponce G, Vega L. Small solution to nonlinear Schrdinger equations[J].Annales de l’Institut Henri Poincaré Nonlinear Analysis, 1993, 10(3):255-288.
    [7]
    Hayashi N, Nakamitsu K, Tsutsumi M. On solutions of the initial value problem for the nonlinear Schrdinger equations[J].Journal of Functional Analysis, 1987, 71(2):218-245. doi: 10.1016/0022-1236(87)90002-4
    [8]
    Hayashi N,Tsutsumi Y. Scattering theory for Hartree type equations[J]. Annales de I’institut Henri Poincaré,Physique Théorique, 1987, 46:187-213.
    [9]
    Ginibre J, Velo G. The global Cauchy problem for the nonlinear Schrdinger equation[J]. Annales de l’Institut Henri Poincaré Non Linear Analysis, 1985, 2(4):309-327.
    [10]
    Ginibre J, Ozawa T. Long range scattering for nonlinear Schrdinger and Hartree equations in space dimensions n≥2[J]. Communications in Mathematical Physic, 1993, 151(3):619-645. doi: 10.1007/BF02097031
    [11]
    Strauss W A. Nonlinear Wave Equations[M]. Conference Board of the Mathematical Sciences, No. 73.Providence,Rhode Island:American Mathematical Society,1989.
    [12]
    Cazenave T. An Introduction to Nonlinear Schrdinger Equations[M]. Textos de Metodos Matematicos, Vol 22,Rio de Janeiro: 1989.
    [13]
    CHEN Guang-gan, ZHANG Jian. Remarks on global existence for the supercritical nonlinear Schrdinger equation with a harmonic potential[J]. Journal of Mathematical Analysis and Applications, 2006, 320(2):591-598. doi: 10.1016/j.jmaa.2005.07.008
    [14]
    Fujiwara D. Remarks on convergence of the Feynman path integrals[J].Duke Mathematical Journal, 1980, 47(3):559-600. doi: 10.1215/S0012-7094-80-04734-1
    [15]
    Yajima K. On fundamental solution of time dependent Schrdinger equations[J]. Contemporary Mathematics, 1998, 217:49-68. doi: 10.1090/conm/217/02981
    [16]
    Oh Y G. Cauchy problem and Ehrenfest’s law of nonlinear Schrdinger equations with potentials[J]. Journal of Differential Equations, 1989, 81(2):255-274. doi: 10.1016/0022-0396(89)90123-X
    [17]
    ZHANG Jian. Stability of standing waves for nonlinear Schrdinger equations with unbounded potentials[J].Zeitschrift für Angewandte Mathematik und Physik, 2000, 51(3):498-503. doi: 10.1007/PL00001512
    [18]
    ZHANG Jian. Stability of attractive Bose-Einstein condensates[J].Journal of Statistical Physics, 2000, 101(3/4):731-746. doi: 10.1023/A:1026437923987
    [19]
    Carles Rémi. Critical nonlinear Schrdinger equation with and without harmonic potential[J]. Mathematical Models and Methods in Applied Sciences, 2002, 12(10):1513-1523. doi: 10.1142/S0218202502002215
    [20]
    Carles Rémi . Remarks on the nonlinear Schrdinger equation with harmonic potential[J]. Annales Henri Poincaré, 2002, 3(3/4):757-772. doi: 10.1007/s00023-002-8635-4
    [21]
    Tsurumi T, Wadati M. Collapses of wave functions in multidimensional nonlinear Schrdinger equations under harmonic potential[J]. Journal of the Physical Society of Japan, 1997, 66(10):3031-3034.
    [22]
    Shu J, Zhang J. Nonlinear Shrdinger equation with harmonic potential[J]. Journal of Mathematical Physics, 2006, 47(6):063503. doi: 10.1063/1.2209168
    [23]
    Tao Terence,Visan Monica,ZHANG Xiao-yi. The nonlinear Schrdinger equation with combined power-type nonlinearities[J]. Commumications in Partial Differential Equations, 2007, 32(7/9):1281-1343. doi: 10.1080/03605300701588805
    [24]
    SHU Ji, ZHANG Jian. Instability of standing waves for a class of nonlinear Schrdinger equations[J].Journal of Mathematical Analysis and Applications,2007, 327(2):878-890. doi: 10.1016/j.jmaa.2006.04.082
    [25]
    XU Run-zhang,ZHANG Wen-ying , WU Wei-ning. Nonlinear Analysis Research Trends[M].Incorporation: Nova Science Publishers,2008: 259-281.
    [26]
    Payne L E, Sattinger D H. Saddle points and intability of nonlinear hyperbolic equations[J]. Israel Journal of Mathematics, 1975, 22(3/4):273-303. doi: 10.1007/BF02761595
    [27]
    XU Run-zhang, LIU Ya-cheng. Remarks on nonlinear Schrdinger equation with harmonic potential[J]. Journal of Mathematical Physics, 2008, 49(4):043512. doi: 10.1063/1.2905154
    [28]
    Kato T. On nonlinear Shrdinger equations[J]. Annales de I’institut Henri Poincaré,Physique Théorique, 1987, 49(1):113-129.
    [29]
    Cazenave T. Semilinear Schrdinger Equations[M]. Courant Lecture Notes in Mathematics.Providence,Rhode Island: American Mathematical Society,2003.
    [30]
    Tsutsumi Y, Zhang J. Instability of optical solitons for two-wave interaction model in cubic nonlinear media[J]. Advances in Mathematical Sciences and Applications, 1998, 8(2):691-713.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1639) PDF downloads(848) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return