LI Zhao-xiang, YANG Zhong-hua. Bifurcation Method for Solving Multiple Positive Solutions to Boundary Value Problem of p-Henon Equation on the Unit Disk[J]. Applied Mathematics and Mechanics, 2010, 31(4): 481-490. doi: 10.3879/j.issn.1000-0887.2010.04.010
Citation: LI Zhao-xiang, YANG Zhong-hua. Bifurcation Method for Solving Multiple Positive Solutions to Boundary Value Problem of p-Henon Equation on the Unit Disk[J]. Applied Mathematics and Mechanics, 2010, 31(4): 481-490. doi: 10.3879/j.issn.1000-0887.2010.04.010

Bifurcation Method for Solving Multiple Positive Solutions to Boundary Value Problem of p-Henon Equation on the Unit Disk

doi: 10.3879/j.issn.1000-0887.2010.04.010
  • Received Date: 1900-01-01
  • Rev Recd Date: 2010-02-22
  • Publish Date: 2010-04-15
  • An algorithm which was applied to solving theO(2)symmetric positive solutions to the boundary value problem ofp-Henon equation was proposed.Taking linp-Henon equation as a bifurcation parameter,the symmetry-breaking bifurcation point on the branch of theO(2) symmetric positive solutions was found via the extended systems.Finally,other symmetric positive solutions were computed by the branch switching method based on the Liapunov-Schmid treduction.
  • loading
  • [1]
    Amann H. Supersolution,monotone iteration and stability[J]. J Diff Eq,1976,21(3):367-377.
    [2]
    Amann H, Crandall M G. On some existence theorems for semilinear elliptic equations[J]. Indian Univ Math J,1978,27(5):779-790. doi: 10.1512/iumj.1978.27.27050
    [3]
    Chang K C. Infinite Dimensional Morse Theory and Multiple Solution Problems[M].Boston:Birkhauser,1993.
    [4]
    Struwe M. Variational Methods, A Series of Modern Surveys in Math[M]. Berlin:Springer-Verlag, 1996.
    [5]
    Pao C V.Block monotone iterative methods for numerical solutions of nonlinear elliptic equations[J].Numer Math,1995,72(2):239-262. doi: 10.1007/s002110050168
    [6]
    Deng Y ,Chen G,Ni W M ,et al. Boundary element monotone iteration scheme for semilinear elliptic partial differential equations[J]. Math Comput,1996,65(5):943-982. doi: 10.1090/S0025-5718-96-00743-0
    [7]
    Choi Y S , McKenna P J. A mountain pass method for the numerical solutions of semilinear elliptic problems[J]. Nonlinear Anal,1993,20(6):417-437. doi: 10.1016/0362-546X(93)90147-K
    [8]
    Ding Z H ,Costa D ,Chen G. A high-linking algorithm for sign-changing solutions of semilinear elliptic equations[J]. Nonlinear Anal,1999,38(3):151-172. doi: 10.1016/S0362-546X(98)00086-8
    [9]
    Li Y, Zhou J X. A minimax method for finding multiple critical points and its applications to semilinear PDE[J]. SIAM J Sci Comput,2002,23(4):840-865.
    [10]
    Yao X D, Zhou J X.A minimax method for finding multiple critical points in Banach spaces and its application to quasi-linear elliptic PDE[J]. SIAM J Sci Comput,2005,26(4):1796-1809. doi: 10.1137/S1064827503430503
    [11]
    Chen C M , Xie Z Q. Search-extension method for multiple solutions of nonlinear problem[J]. Comp Math Appl,2004,47(6):327-343. doi: 10.1016/S0898-1221(04)90028-4
    [12]
    杨忠华,李昭祥,朱海龙.计算Henon方程多个正解的分歧方法[J].中国科学A辑:数学,2007,37(12):1417-1428.
    [13]
    Golubitsky M , Stewart I, Schaeffer D G. Singularities and Groups in Bifurcation Theory Ⅱ[M]. New York: Springer-Verlag,1988.
    [14]
    杨忠华.非线性分歧:理论和计算[M]. 北京:科学出版社, 2007.
    [15]
    王竹溪, 郭敦仁. 特殊函数概论[M]. 北京:北京大学出版社,2000.
    [16]
    朱海龙, 李昭祥, 杨忠华. 计算圆域上 Henon方程边值问题多解的分歧方法[J]. 重庆工学院学报(自然科学版), 2008,22(9):57-63.
    [17]
    李昭祥, 杨忠华, 朱海龙, 等. Henon方程多解计算的分歧方法[J].上海师范大学学报自然科学版,2007,36(1):1-6.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1362) PDF downloads(955) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return