Citation: | ZHU Jing, ZHENG Lian-cun, ZHANG Zhi-gang. Effect of the Slip Condition on the MHD Stagnation-Point Flow Over a Power-Law Stretching Sheet[J]. Applied Mathematics and Mechanics, 2010, 31(4): 411-419. doi: 10.3879/j.issn.1000-0887.2010.04.003 |
[1] |
Mooney M. Explicit formulas for slip and fluidity[J]. J Rheology,1931,2(2):210-222. doi: 10.1122/1.2116364
|
[2] |
Rao I J, Rajagopal K R. The effect of the slip condition on the flow of fluids in a channel[J]. Acta Mech,1999, 135(3): 113-126. doi: 10.1007/BF01305747
|
[3] |
Khaled A R A, Vafai K. The effect of slip condition on Stokes and Couette flows due to an oscillating wall: exact solutions[J]. Int J Non-Linear Mech,2004, 39(5): 795-804. doi: 10.1016/S0020-7462(03)00043-X
|
[4] |
Wang C Y. Flow due to a stretching boundary with partial slip―an exact solution of the Navier-Stokes equations[J]. Chem Eng Sci, 2002, 57(17): 3745-3747. doi: 10.1016/S0009-2509(02)00267-1
|
[5] |
Wang C Y. Stagnation slip flow and heat transfer on a moving plate[J]. Chem Eng Sci, 2006, 61(23): 7668-7672. doi: 10.1016/j.ces.2006.09.003
|
[6] |
Hayat T, Masood K, Ayub M. The effect of the slip condition on flows of an Oldroyd 6-constant fluid[J]. J Comput Appl Math, 2007, 202(2): 402-413. doi: 10.1016/j.cam.2005.10.042
|
[7] |
乔德哈瑞 R C, 吉哈 A K. 化学反应对竖直平板边界磁流体动力学微极流体滑流的影响[J].应用数学和力学,2008,29(9):1069-1082.
|
[8] |
Andersson H I, Rousselet M. Slip flow over a lubricated rotating disk[J]. Int J Heat Fluid Flow, 2006, 27(2): 329-335. doi: 10.1016/j.ijheatfluidflow.2005.09.002
|
[9] |
Labropulu F, Li D. Stagnation-point flow of a second-grade fluid with slip[J]. Int J Non-Linear Mech, 2008, 43(9): 941-947. doi: 10.1016/j.ijnonlinmec.2008.07.004
|
[10] |
朱婧,郑连存,张欣欣.具有延伸表面的驻点流动和传热问题的级数解[J].应用数学和力学,2009,30(4):432-442.
|
[11] |
莫嘉琪.具有边界摄动弱非线性反应扩散方程的奇摄动[J].应用数学和力学,2008,29(8):1003-1089.
|
[12] |
林苏榕,莫嘉琪.超抛物型方程的非线性奇摄动问题[J].应用数学和力学,2008,29(10):1249-1253.
|
[13] |
苏晓红,郑连存,蒋锋.幂律流体边界层方程的近似解析解和壁摩擦因数的近似值[J].应用数学和力学,2008,29(9):1101-1106.
|
[14] |
梁祖峰,唐晓艳.用Adomian分解法求解分数阻尼梁的解析解[J].应用数学和力学,2007,28(2):200-209.
|
[15] |
张善元,刘志芳.有限变形弹性杆中三种非线性弥散波[J].应用数学和力学,2008,29(7):908-917.
|
[16] |
Liao S J. Beyond Perturbation: Introduction to Homotopy Analysis Method[M]. Boca Raton:Chapman Hall/CRC, 2003.
|
[17] |
Liao S J. On the homotopy analysis method for nonlinear problems[J]. Appl Math Comput, 2004, 147(2): 499-513. doi: 10.1016/S0096-3003(02)00790-7
|
[18] |
Hayat T, Abbas Z, Sajid M. Series solution for the upper-convected Maxwell fluid over a porous stretching plate[J]. Phys Lett A, 2006, 358(6): 396-403. doi: 10.1016/j.physleta.2006.04.117
|
[19] |
Xu H, Liao S J. Series solutions of unsteady magnetohydrodynamic flows of non-Newtonian fluids caused by an impulsively stretching plate[J]. J Non-Newton Fluid, 2005, 129(1): 46-55. doi: 10.1016/j.jnnfm.2005.05.005
|
[20] |
Tan Y, Xu H, Liao S J. Explicit series solution of travelling waves with a front of Fisher equation[J]. Chaos Soliton Fract, 2007, 31(2): 462-472. doi: 10.1016/j.chaos.2005.10.001
|
[21] |
Liao S J. An optimal homotopy-analysis approach for strongly nonlinear differential equations[J]. Commun Nonlinear Sci Numer Simul, 2009. doi: 10.1016/j. cnsns. 2009. 09.002.
|