Citation: | HU Jun, YIN Xie-yuan, HANG Yi-hong, ZHANG Shu-dao. Linear Rayleigh-Taylor Instability Analysis of a Double-Shell Kidder’s Self-Similar Implosion[J]. Applied Mathematics and Mechanics, 2010, 31(4): 399-410. doi: 10.3879/j.issn.1000-0887.2010.04.002 |
[1] |
Rayleigh L. Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density[J]. Proc London Math Soc, 1883, 14:170-177.
|
[2] |
Taylor G I. The instability of liquid surface when accelerated in a direction perpendicular to their planes[J]. Proc R Soc London, Ser A, 1950, 201: 192-196.
|
[3] |
Richtmyer R D. Taylor instability in shock acceleration of compressible fluids[J]. Commun Pure Appl Math,1960, 13(2): 297-319. doi: 10.1002/cpa.3160130207
|
[4] |
Meshkov E E. Instability of the interface of two gases accelerated by a shock wave[J]. Sov Fluid Dyn,1969, 4(5): 151-157.
|
[5] |
Chandrasekhar S. Hydrodynamic and Hydromagnetic Stability[M]. London: Oxford University Press, 1961.
|
[6] |
Kidder R E. Laser-driven compression of hollow shells: power requirements and stability limitations[J]. Nuclear Fusion,1976, 16(1): 3-14. doi: 10.1088/0029-5515/16/1/001
|
[7] |
Breil J, Hallo L, Maire P H,et al. Hydrodynamic instabilities in axisymmetric geometry self-similar models and numerical simulations[J]. Laser and Particle Beams, 2005, 23(2): 155-160.
|
[8] |
Jaouen S. A purely Lagrangian method for computing linearly-perturbed flows in spherical geometry[J]. Journal of Computational Physics, 2007, 225(1): 464-490. doi: 10.1016/j.jcp.2006.12.008
|
[9] |
水鸿寿.一维流体力学差分方法[M].北京:国防工业出版社,1998.
|
[10] |
Després B. Lagrangian systems of conservation laws. Invariance properties of Lagrangian systems of conservation laws, approximate Riemann solvers and the entropy condition[J]. Numer Math, 2001, 89(1): 99-134. doi: 10.1007/PL00005465
|
[11] |
Livescu D. Compressible effects on the Rayleigh-Taylor instability growth between immiscible fluids[J]. Phys Fluids, 2004, 16(1): 118-127. doi: 10.1063/1.1630800
|