FEGN Min-fu, QI Rui-sheng, ZHU Rui, JU Bing-tao. Stabilized Crouzeix-Raviart Element for the Coupled Stokes and Darcy Problem[J]. Applied Mathematics and Mechanics, 2010, 31(3): 369-378. doi: 10.3879/j.issn.1000-0887.2010.03.012
Citation: FEGN Min-fu, QI Rui-sheng, ZHU Rui, JU Bing-tao. Stabilized Crouzeix-Raviart Element for the Coupled Stokes and Darcy Problem[J]. Applied Mathematics and Mechanics, 2010, 31(3): 369-378. doi: 10.3879/j.issn.1000-0887.2010.03.012

Stabilized Crouzeix-Raviart Element for the Coupled Stokes and Darcy Problem

doi: 10.3879/j.issn.1000-0887.2010.03.012
  • Received Date: 1900-01-01
  • Rev Recd Date: 2010-01-25
  • Publish Date: 2010-03-15
  • A new stabilized finite element method for the coupled Stokes and Darcy problem was introduced based on the noncom forming Crouzeix-Raviart element. Optimal error estimates for the fluid velocity and pressure were derived. Finally, a numerical example verifying the theoretical predictions was presented.
  • loading
  • [1]
    Karper T, Mardal K A, Winther R. Unified finite element discretizations of coupled Darcy-Stokes flow[J]. Numer Methods Partial Differential Equation, 2008, 25(2): 311-326.
    [2]
    Discacciati M, Quarteroni A. Analysis of a domain decomposition method for the coupling of Stokes and Darcy equations[C]Brezzi F.Numercial Analysis and Advanced Applications-Enumath 2001, Milan: Springer, 2003: 3-20.
    [3]
    Discacciati M. Domain Decomposition Method for the Coupling of Surface and Groundwater Flows[D]. PhD thesis. cole polotechnique Fédéraled de Lausanne, Switzerland, 2004.
    [4]
    Arbogast T, Brunson D S. A computational method for approximating a Darcy-Stokes system governing a vuggy porous medium[J]. Computational Geosciences, 2007, 11(3): 207-218. doi: 10.1007/s10596-007-9043-0
    [5]
    Layton W, Schieweck F, Yotov I. Coupling fluid flow with porous media flow[J]. SIAM J Numer Anal, 2002, 40(6): 2195-2218. doi: 10.1137/S0036142901392766
    [6]
    Riviére B. Analysis of a discontinuous finite element method for the Stokes and Darcy problem[J]. J Sci Comput, 2005, 22(1): 479-500. doi: 10.1007/s10915-004-4147-3
    [7]
    Bauska I. The finite element method with Lamultiplier[J]. Numer Math, 1973, 20(1): 179-192. doi: 10.1007/BF01436561
    [8]
    Brezzi F. On the existence, uniqueness, and approximation of saddle point problems arising from Lagrangian multipliers[J]. RAIRO Anal Numer, 1974, 2(8): 129-151.
    [9]
    Rivière B, Yotov I. Locally conservative coupling of Stokes and flows[J]. SIAM J Numer Anal, 2005, 42(5): 1959-1977. doi: 10.1137/S0036142903427640
    [10]
    Urquiza J M, N’Dri D, Garon A, et al. Coupling Stokes and Darcy equations[J]. Appl Numer Math, 2008, 58(5): 525-538. doi: 10.1016/j.apnum.2006.12.006
    [11]
    Burman, Hansbo P. Stabilized Crouzeix-Raviart element for the Darcy- Stokes problem[J]. Numer Methods Partial Diffential, 2005, 21(5): 986-997. doi: 10.1002/num.20076
    [12]
    Crouzeix, Raviart P A. Conforming and nonconforming finite element methods for solving the stationary Stokes equations[J].RAIRO Sér Roug, 1973, 7(3): 33-75.
    [13]
    Hansbo P, Larson M G. Discontinuous Galerkin and the Crouzeix-Raviart element:application to elasticity[J]. E Math Mode Num Anal, 2003, 37(1): 63-72.
    [14]
    Hansbo P, Larson M G. Discontinuous Galerkin method for incompressible and nearly incompressible elasticity by Nitshe’s method[J]. Comput Methods Appl Mech Engrg, 2002, 191(17/18): 1895-1908. doi: 10.1016/S0045-7825(01)00358-9
    [15]
    Beavers G S, Joseph D D. Boundary conditions at a naturally impermeable wall[J]. J Fluid Mech, 2003, 30(2): 197-207.
    [16]
    Jger W, Mikelic A. On the interface boundary condition of Beavers, Joseph, and Saffman[J]. SIAM J Appl Math, 2000, 60(14): 1111-1127. doi: 10.1137/S003613999833678X
    [17]
    Saffman P. On the boundary condition at the surface of a porous media[J]. Stud Appl Math, 1971, 50(1): 292-315.
    [18]
    Brezzi F, Bristeau M O, Franca K L, et al.A relationship between stabilized finite element methods and the Galerkin method with bubble functions[J].Comput Methods Appl Mech Engrg, 1992, 96(1): 117-129. doi: 10.1016/0045-7825(92)90102-P
    [19]
    Douglas J, Wang J. An absolutely stabilized finite element method for the Stokes problem[J]. Math Comp, 1989, 52(186): 495-508. doi: 10.1090/S0025-5718-1989-0958871-X
    [20]
    ZHOU Tian-xiao, FENG Min-fu. A least squares Petrov-Galerkin finite element method for the stationary Navier-Stokes[J]. Math Comp, 1993, 60(202):531- 543. doi: 10.1090/S0025-5718-1993-1164127-6
    [21]
    Thoméé V. Galerkin Finite Element Method for Parabolic Problems[M]. Berlin Heidelberg: Springer-Verlag, 1997.
    [22]
    Brenner S. Korn’s inequalities for piecewise H1 vector fields[J]. Math Comp, 2004, 73(247): 1067-1087.
    [23]
    Girault V, Raviart P A. Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms[M]. Berlin: Springer-Verlag, 1986.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2044) PDF downloads(1003) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return