XU Jia-chu, LI Yong, WANG Fan, LIU Ren-huai. Nonlinear Stability of a Double-Deck Reticulated Circular Shallow Spherical Shell[J]. Applied Mathematics and Mechanics, 2010, 31(3): 261-272. doi: 10.3879/j.issn.1000-0887.2010.03.002
Citation: XU Jia-chu, LI Yong, WANG Fan, LIU Ren-huai. Nonlinear Stability of a Double-Deck Reticulated Circular Shallow Spherical Shell[J]. Applied Mathematics and Mechanics, 2010, 31(3): 261-272. doi: 10.3879/j.issn.1000-0887.2010.03.002

Nonlinear Stability of a Double-Deck Reticulated Circular Shallow Spherical Shell

doi: 10.3879/j.issn.1000-0887.2010.03.002
  • Received Date: 1900-01-01
  • Rev Recd Date: 2009-12-16
  • Publish Date: 2010-03-15
  • Based on the variational equation of the nonlinear bending theory of double-deck reticulated shallow shells, equations of large deflection and boundary conditions for a doubledeck reticulated circular shallow spherical shell under a uniformly distributed pressure were derived by using coordinate transformation means and stationary complementary energy principle. The characteristic relationship and critical buckling pressure for the shell with two types of boundary conditions were obtained by taking the modified iteration method. The effects of geometrical parameters on the buckling behavior were also discussed.
  • loading
  • [1]
    LIU Ren-huai,LI Dong,NIE Guo-hua,et al.Non-linear buckling of squarely-latticed shallow spherical shell[J].Int J Non-Linear Mechanics, 1991, 26(5): 547-565. doi: 10.1016/0020-7462(91)90009-I
    [2]
    刘人怀,聂国华.网格扁壳的非线性弯曲理论[J].江西工业大学学报, 1991, 13(2): 186-192.
    [3]
    刘人怀,聂国华.网格扁壳的非线性自由振动分析[J].江西工业大学学报, 1991, 13(2): 193-198.
    [4]
    聂国华,刘人怀,翁志远.网格扁壳结构的非线性弯曲与稳定问题研究[J].上海力学, 1994, 15(2): 17-27.
    [5]
    聂国华,刘人怀.矩形网格扁壳结构的非线性弹性理论[J].应用数学和力学, 1994, 15(5): 389-397.
    [6]
    聂国华,刘人怀.矩形网格扁壳的非线性特征关系[J].土木工程学报, 1995, 28(1): 12-21.
    [7]
    刘人怀,肖潭.双层正交正放网格扁壳结构的非线性弯曲理论[C]庄蓬甘.现代力学与科技进步.北京: 清华大学出版社, 1997: 1212-1215.
    [8]
    刘人怀,肖潭.矩形底双层网格扁壳的非线性弯曲[J].暨南大学学报, 1998, 19(3): 1-5.
    [9]
    刘人怀,肖潭.矩形底双层网格扁壳的非线性屈曲[J].暨南大学学报, 1999, 20(1): 1-6.
    [10]
    肖潭.矩形底双层网格扁壳的非线性振动分析[J].暨南大学学报,2000, 21(5): 13-19.
    [11]
    肖潭,刘人怀.斜放四角锥扁网壳的非线性弯曲理论[J].应用数学和力学, 2001, 22(7): 666-672.
    [12]
    徐加初,肖潭,刘人怀.双层柱面网格扁壳的非线性稳定性分析[J].工程力学, 2004, 21(2): 20-23.
    [13]
    卢保红,刘人怀.双层球面网格扁壳的非线性稳定分析[J].暨南大学学报, 2005, 26(1): 60-63.
    [14]
    杜冰,王璠,刘人怀,等.大跨度双层网壳的非线性动态效应[J].力学与实践, 2006, 28(4): 46-50.
    [15]
    董石麟,詹伟东.单双层球面扁网壳连续化方法非线性稳定理论临界荷载的确定[J].工程力学, 2004, 21(3): 6-14.
    [16]
    顾磊,董石麟.局部双层叉筒网壳的非线性和线性分析[J].空间结构, 2005, 11(3): 39-45.
    [17]
    王新志,梁从兴,韩明君,等.扁柱面网壳的非线性动力学行为[J].应用数学和力学, 2007, 28(2): 135-140.
    [18]
    沈世钊,陈昕.网壳结构稳定性[M].北京: 科学出版社, 1999.
    [19]
    赵阳,董石麟.组合网壳结构的几何非线性稳定分析[J].空间结构, 1994, 1(2): 17-25.
    [20]
    刘大卫,董石麟.大型柱面网壳的非线性稳定性分析[J].空间结构, 1995, 3(1): 14-22.
    [21]
    朱忠义,董石麟.球面组合网壳结构的几何非线性稳定分析[J].空间结构, 1996, 1(2): 1-11.
    [22]
    肖建春,马克俭.预应力局部单双层浅网壳结构的几何非线性稳定分析[J].空间结构, 2003, 9(2): 32-37.
    [23]
    谢志红,李丽娟,叶伟年,等.局部双层网壳结构非线性屈曲分析[J].广东工业大学学报, 2003, 20(3): 5-8.
    [24]
    李春燕,李海旺,秦冬祺,等.132 m跨双层圆柱面网壳的非线性稳定分析[J].太原理工大学学报, 2006, 37(4): 389-392.
    [25]
    何放龙,马自克.强震作用下双层球面网壳结构非线性动力响应分析[J].湖南大学学报, 2007, 34(10): 1-5.
    [26]
    钱伟长.大位移非线性弹性理论的变分原理和广义变分原理[J].应用数学和力学, 1988, 9(1): 1-11.
    [27]
    叶开沅,刘人怀,平庆元,等.在对称线布载荷作用下的圆底扁薄球壳的非线性稳定性[J].科学通报, 1965,10(2): 142-145.
    [28]
    叶开沅,刘人怀,张传智,等.圆底扁薄球壳在边缘力矩作用下的非线性稳定问题[J].科学通报, 1966, 10(2): 145-147.
    [29]
    刘人怀.在内边缘均布力矩作用下中心开孔圆底扁球壳的非线性稳定问题[J].科学通报, 1965, 10(3): 253-255.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1784) PDF downloads(1002) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return