HONG Wen-liang, GUO Xing-ming. Deformation of Metallic Single-Walled Carbon Nanotubes in the Electric Field Based on Elastic Theory[J]. Applied Mathematics and Mechanics, 2010, 31(3): 253-260. doi: 10.3879/j.issn.1000-0887.2010.03.001
Citation: HONG Wen-liang, GUO Xing-ming. Deformation of Metallic Single-Walled Carbon Nanotubes in the Electric Field Based on Elastic Theory[J]. Applied Mathematics and Mechanics, 2010, 31(3): 253-260. doi: 10.3879/j.issn.1000-0887.2010.03.001

Deformation of Metallic Single-Walled Carbon Nanotubes in the Electric Field Based on Elastic Theory

doi: 10.3879/j.issn.1000-0887.2010.03.001
  • Received Date: 1900-01-01
  • Rev Recd Date: 2010-02-04
  • Publish Date: 2010-03-15
  • The electromechanical properties of metallic single-walled carbon nanotubes (SWCNTs) in the electric field are demonstrated via a column shell model. A model of hemisphere was in troduced to determine the charge distribution and localelectric field on SWCNTs. It is shown that, regarding the SWCNT's an elastic column shell, the analytical solutions of charged SWCNT's axial strain and radial strain are obtained. Single-walled carbon nanotubes with higher aspectratio can show greater deformation and the greatestradial deformation appears at the end of the tube, and significant axial strain can be induced in CNTs with long length (around 100 nm) even though the applied electric field is not strong enough; when the SWCNTs are fixed at both ends the radius of SWCNTs become smaller along axial position. These results redound to our understanding of metallic SWCNTs electrom echanical properties in the electric field and SWCNTs applications on nanoelectronic device and nanoelectrom echanical systems.
  • loading
  • [1]
    Treacy M M J, Ebbesen T W, Gibson J M. Exceptional high Young’s modulus observed for individual carbon nanotubes[J]. Nature, 1996, 381(20): 678-680 . doi: 10.1038/381678a0
    [2]
    Lu J P. Elastic properties of carbon nanotubes and nanoropes[J]. Physical Review Letters, 1997, 79(7): 1297-1300.
    [3]
    Hamada N, Sawada S, Oshiyama A. New one-demensional conductors: graphitic microtubules[J]. Phys Rev Lett, 1992, 68(10): 1579-1581. doi: 10.1103/PhysRevLett.68.1579
    [4]
    White C T, Robertson D H, Mintmire J W. Energy gaps in “metallic” single-walled carbon nanotubes[C]Jena P, Behera S. Clusters and Nanostructured Materials. New York: Nova, 1996: 231-237.
    [5]
    Blase X, Benedict L X, Shirley E L, et al. Hybridization effects and metallicity in small radius carbon nanotubes[J]. Phys Rev Lett, 1994, 72(21): 1878-1881. doi: 10.1103/PhysRevLett.72.1878
    [6]
    Kane C L, Mele E J. Size, shape and low energy electronic structure of carbon nanotubes[J]. Phys Rev Lett, 1997, 78(10):1932-1935. doi: 10.1103/PhysRevLett.78.1932
    [7]
    Baughman R H, Zakhidov A A, de Heer W A. Carbon nanotubes—the route toward applications[J]. Science, 2002, 297(5582): 787-792. doi: 10.1126/science.1060928
    [8]
    Bonard J M, Dean K A, Coll B F, et al. Field emission of individual carbon nanotubes in the scanning electron microscape[J]. Phys Rev Lett, 2002, 89(19): 197602. doi: 10.1103/PhysRevLett.89.197602
    [9]
    ZHENG Xiao, Chen G H,Deng S Z, et al. Quantum-mechanical investigation of field-emission mechanism of a micrometer-long single-walled carbon nanotube[J]. Phys Rev Lett, 2004, 92(10): 106803.1-106803.4. doi: 10.1103/PhysRevLett.92.106803
    [10]
    Keblinski P, Nayak S K, Zapol P, et al. Charge distribution and stability of charged carbon nanotubes[J]. Phys Rev Lett, 2002, 89(25): 255503.1-255503.4. doi: 10.1103/PhysRevLett.89.255503
    [11]
    Sun G Y, Kurti J, Kertesz M, et al. Dimensional changes as a function of charge injection in single-walled carbon nanotubes[J]. JACS, 2002, 124(50):15076-15080. doi: 10.1021/ja020616j
    [12]
    Guo Y F, Guo W L. Mechanical and electrostatic properties of carbon nanotubes under tensile loading and electric field[J]. J Phys D: Appl Phys, 2003, 36(7): 805-811. doi: 10.1088/0022-3727/36/7/306
    [13]
    Guo W L, Guo Y F. Giant axial eletrostrictive deformation in carbon nanotubes[J]. Phys Rev Lett, 2003, 91(11): 115501.1-115501.4. doi: 10.1103/PhysRevLett.91.115501
    [14]
    Li C Y, Chou T W. Charge-induced strains in single-walled carbon nanotubes[J]. Nanotechnology, 2006, 17(18): 4624-4628. doi: 10.1088/0957-4484/17/18/015
    [15]
    CHUN Yu-li, CHOU Tsu-wei. Theoretical studies on the charge-induced failure of single-walled carbon nanotubes[J]. Carbon, 2007, 45(5):922-930. doi: 10.1016/j.carbon.2007.01.004
    [16]
    Kokkrakis G C, Modinos A, Xanthankis J P. Local eletric field at the emitting surface of a carbon nanotube[J]. J Appl Phys, 2001, 91(7): 4580-4584.
    [17]
    Tans S J, Devoret M H, Dai H J, et al. Individual single wall carbon nanotubes as quantum wires[J]. Nature, 1997, 386(6624): 474-477. doi: 10.1038/386474a0
    [18]
    Snow E S, Perkins F K, Houser E J, et al. Chemical detection with a single-walled carbon nanotubes capacitor[J]. Science, 2005, 307(5717):1942-1945. doi: 10.1126/science.1109128
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1705) PDF downloads(949) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return