Citation: | R. A. Mashiyev, G. Alisoy, S. Ogras. Solutions to Semilinear p-Laplacian Dirichlet Problem Arising in Population Dynamics[J]. Applied Mathematics and Mechanics, 2010, 31(2): 227-235. doi: 10.3879/j.issn.1000-0887.2010.02.012 |
[1] |
Namba T. Density-dependent dispersal and spatial distribution of a population [J]. J Theoret Biol,1980,86(2): 351-363. doi: 10.1016/0022-5193(80)90011-9
|
[2] |
Carriao P,Miyagaki O. Existence of homoclinic solutions for a class of time-dependent Hamiltonian systems [J].J Math Anal Appl,1999,230(1):157-172. doi: 10.1006/jmaa.1998.6184
|
[3] |
Hahan W. Stability of Monotone[M]. Berlin,New York: Springer-Verlag,1967.
|
[4] |
Alama S. Semilinear elliptic equations with sublinear indefinite nonlinearities [J]. Adv Differ Equations,1999,4(6): 813-842.
|
[5] |
Bartsch T,Wang Z-Q. On the existence of sing changing solutions for semilinear Dirichlet problems [J]. Topology Methods Nonlinear Anal,1997,28: 115-131.
|
[6] |
Dancer E N,Du Y. The generalized Conley index and multiple solutions of semilinear elliptic problems [J]. Abstract Appl Anal,1996,1(1): 103-135. doi: 10.1155/S108533759600005X
|
[7] |
Moroz V. On the Morse critical groups for indefinite sublinear elliptic problems [J]. Nonlinear Anal,2003,52(5): 1441-1453. doi: 10.1016/S0362-546X(02)00174-8
|
[8] |
Perera K. Nontrivial critical groups in p-Laplacian problems via the Yang index [J]. Topol Methods Nonlinear Anal,2003,21(2): 301-309.
|
[9] |
Mawhin J,Willem M. Critical Point Theory and Hamiltonian Systems[M]. Berlin: Springer,1989.
|
[10] |
Chang K C. Infinite Dimensional Morse Theory and Multiple Solution Problems[M]. Boston: Birkhuser,1993.
|
[11] |
Jiu Q,Su J. Existence and multiplicity results for Dirichlet problems with p-Laplacian [J].J Math Anal Appl,2003,281(2):587-601. doi: 10.1016/S0022-247X(03)00165-3
|