Bikash Sahoo. Effects of Slip,Viscous Dissipation and Joule Heating on the MHD Flow and Heat Transfer of a Second Grade Fluid Past a Radially Stretching Sheet[J]. Applied Mathematics and Mechanics, 2010, 31(2): 150-162. doi: 10.3879/j.issn.1000-0887.2010.02.004
Citation: Bikash Sahoo. Effects of Slip,Viscous Dissipation and Joule Heating on the MHD Flow and Heat Transfer of a Second Grade Fluid Past a Radially Stretching Sheet[J]. Applied Mathematics and Mechanics, 2010, 31(2): 150-162. doi: 10.3879/j.issn.1000-0887.2010.02.004

Effects of Slip,Viscous Dissipation and Joule Heating on the MHD Flow and Heat Transfer of a Second Grade Fluid Past a Radially Stretching Sheet

doi: 10.3879/j.issn.1000-0887.2010.02.004
  • Received Date: 2008-10-01
  • Rev Recd Date: 2009-10-20
  • Publish Date: 2010-02-15
  • The flow and heat transfer of an electrically conducting non-New tonian second grade fluiddue to an radially stretching surface with partial slip was considered.The partial slip was controlled by a dimensionless slip factor,which varied between zero(total adhesion) and infin-ity(full slip).Suitable similarity transform ations were used to reduce the resulting highly nonlinear partial differential equations into ordinary differential equations.The issue of paucity of boundary conditions was addressed and an effective numerical scheme was adopted to solve the obtained differential equations even without augmenting any extra boundary conditions.The important findings in this communication are the combined effects of the partial slip,magnetic interaction parameter and the second grade fluid parameter on the velocity and temperature fields.It is interesting to find that the slipincreases the momentum and thermal boundary layer thickness.As slip increases in magnitude,perm ittingmore fluid to slip past the sheet,the skin friction coefficient decreases in magnitude and approaches zero for higher values of the slip parameter,i.e.the fluid behaves as though it were inviscid.The presence of magnetic field has also substantial effects on velocity and temperature fields.
  • loading
  • [1]
    Sakiadis B C.Boundary-layer behavior on continuous solid surfaces—Ⅰ:boundary-layer equations for two-dimensional and axisymmetric flow[J].AIChE J, 1961,7(1):26-28. doi: 10.1002/aic.690070108
    [2]
    Blasius H.Grenzschichten in Flüssigkeiten mit kleiner Reibung[J].Z Math Physik, 1908,56:1-37.
    [3]
    Crane L J.Flow past a stretching sheet[J].Z Angew Math Phys (ZAMP),1970, 21(4):645-647. doi: 10.1007/BF01587695
    [4]
    Cortell R.Effects of viscous dissipation and radiation on the thermal boundary layer over a nonlinearly stretching sheet[J].Phys Letters A, 2008,372(5):631-636. doi: 10.1016/j.physleta.2007.08.005
    [5]
    Vajravelu K,Cannon J R.Fluid flow over a nonlinearly stretching sheet[J].Appl Maths Comp, 2006,181(1):609-618. doi: 10.1016/j.amc.2005.08.051
    [6]
    Ariel P D.Generalized three-dimensional flow due to a stretching sheet[J].ZAMM, 2003,83(12):844-852. doi: 10.1002/zamm.200310052
    [7]
    Ariel P D.Axisymmetric flow due to a stretching sheet with partial slip[J].Int J Comp Maths Appl, 2007,54(7/8):1169-1183. doi: 10.1016/j.camwa.2006.12.063
    [8]
    Ariel P D.On computation of the three-dimensional flow past a stretching sheet[J].Appl Maths Comp, 2007,188(2):1244-1250. doi: 10.1016/j.amc.2006.10.083
    [9]
    Wang C Y.The three-dimensional flow due to a stretching flat surface[J].Phys Fluids,1984,27(8):1915-1917. doi: 10.1063/1.864868
    [10]
    Sajid M, Hayat T,Asghar S,et al.Analytic solution for axisymmetric flow over a nonlinearly stretching sheet[J].Arch Appl Mech.doi: 10.1007/s00419-007-0146-9, 2007.
    [11]
    Sajid M,Ahmad I,Hayat T, et al.Series solution for unsteady axisymmetric flow and heat transfer over a radially stretching sheet[J].Comm Nonlin Sci Num Sim, 2008,13(10):2193-2202. doi: 10.1016/j.cnsns.2007.06.001
    [12]
    Rajagopal K R, Na T Y,Gupta A S.Flow of a viscoelastic fluid over a stretching sheet[J].Rheo Acta,1984,23(2):213-215. doi: 10.1007/BF01332078
    [13]
    Andersson H I.MHD flow of a viscoelastic fluid past a stretching surface[J].Acta Mech, 1992,95(1/4):227-230. doi: 10.1007/BF01170814
    [14]
    Ariel P D.MHD flow of a viscoelastic fluid past a stretching sheet with suction[J].Acta Mech, 1994,105(1/4):49-56. doi: 10.1007/BF01183941
    [15]
    Liu I-C.Flow and heat transfer of an electrically conducting fluid of second grade over a stretching sheet subject to a transverse magnetic field[J].Int J Heat Mass Trans, 2004,47(19/20):4427-4437. doi: 10.1016/j.ijheatmasstransfer.2004.03.029
    [16]
    Sahoo B,Sharma H G.Existence and uniqueness theorem for flow and heat transfer of a non-Newtonian fluid over a stretching sheet[J].J Zhej Univ Sci A,2007,8(5):766-771. doi: 10.1631/jzus.2007.A0766
    [17]
    Ariel P D.Axisymmetric flow of a second grade fluid past a stretching sheet[J].Int J Engng Sci, 2001,39(5):529-553. doi: 10.1016/S0020-7225(00)00052-5
    [18]
    Hayat T,Sajid M.Analytic solution for axisymmetric flow and heat transfer of a second grade fluid past a stretching sheet[J].Int J Heat Mass Trans, 2007,50(1/2):75-84. doi: 10.1016/j.ijheatmasstransfer.2006.06.045
    [19]
    Hayat T,Sajid M,Pop I.Three-dimensional flow over a stretching surface in a viscoelastic fluid[J].Nonl Anal Real World Appl, 2008,9(4):1811-1822. doi: 10.1016/j.nonrwa.2007.05.010
    [20]
    Navier C L M H.Sur les lois du mouvement des fluides[J].Mem Acad R Acad R Sci Inst Fr, 1827,6:389-440.
    [21]
    Wang C Y.Flow due to a stretching boundary with partial slip-an exact solution of the Navier-Stokes equation[J].Chem Engng Sci,2002,57(17):3745-3747. doi: 10.1016/S0009-2509(02)00267-1
    [22]
    Andersson H I.Slip flow past a stretching surface[J].Acta Mech, 2002,158(1/2):121-125. doi: 10.1007/BF01463174
    [23]
    Wang C Y.Analysis of viscous flow due to a stretching sheet with surface slip and suction[J].Nonlinear Anal Real World Appl, 2009,10(1):375-380. doi: 10.1016/j.nonrwa.2007.09.013
    [24]
    Ariel P D,Hayat T,Asghar S.The flow of an elastico-viscous fluid past a stretching sheet with partial slip[J].Acta Mech, 2006,187(1/4):29-35. doi: 10.1007/s00707-006-0370-3
    [25]
    Hayat T,Javed T,Abbas Z.Slip flow and heat transfer of a second grade fluid past a stretching sheet through a porous space[J].Int J Heat Mass Trans, 2008,51(17/18):4528-4534. doi: 10.1016/j.ijheatmasstransfer.2007.12.022
    [26]
    Sahoo B.Effects of partial slip on axisymmetric flow of an electrically conducting viscoelastic fluid past a stretching sheet[J].Cent Eur J Phy.doi: 10.2478/s11534-009-0105-x, 2009.
    [27]
    Truesdell C,Noll W.The Nonlinear Field Theories of Mechanics[M].Antman S S.3rd Ed.Heidelberg:Springer, 2004.
    [28]
    Shercliff J A.A Text Book of Magnetohydrodynamics[M].Oxford:Pergamon Press, 1965.
    [29]
    萨胡 B,沙尔马H G.均匀自由流动的非牛顿流体中连续表面上的磁流体动力学流动和热传递[J].应用数学和力学, 2007,28(11):1307-1317.
    [30]
    Sahoo B,Sharma H G.Effects of partial slip on the steady von Krmn flow and heat transfer of a non-Newtonian fluid[J].Bull Braz Math Soc, 2007,38(4):595-609. doi: 10.1007/s00574-007-0063-0
    [31]
    Sahoo B.Hiemenz flow and heat transfer of a non-Newtonian fluid[J].Comm Nonlin Sci Num Sim, 2009,14(3):811-826. doi: 10.1016/j.cnsns.2007.12.002
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1921) PDF downloads(810) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return