CHEN Juan, LI Chong-jun, CHEN Wan-ji. A 17-Node Quadrilateral Spline Finite Element Using the Triangular Area Coordinates[J]. Applied Mathematics and Mechanics, 2010, 31(1): 117-126. doi: 10.3879/j.issn.1000-0887.2010.01.013
Citation: CHEN Juan, LI Chong-jun, CHEN Wan-ji. A 17-Node Quadrilateral Spline Finite Element Using the Triangular Area Coordinates[J]. Applied Mathematics and Mechanics, 2010, 31(1): 117-126. doi: 10.3879/j.issn.1000-0887.2010.01.013

A 17-Node Quadrilateral Spline Finite Element Using the Triangular Area Coordinates

doi: 10.3879/j.issn.1000-0887.2010.01.013
  • Received Date: 2009-07-20
  • Rev Recd Date: 2009-12-04
  • Publish Date: 2010-01-15
  • A 17-node quadrilateral element had been developed using the bivariate quartic spline interpolation basis and the triangular area coordinates, which could exactly model the quartic field. Some appropriate examples are employed to illustrate that the element possesses high precision and is insensitive to mesh distortions.
  • loading
  • [1]
    Zienkiewicz O C,Taylor R L. The Finite Element Method[M]. 5th ed. Singapore: Elsevier Pte Itd,2005.
    [2]
    Lee N S,Bathe K J. Effects of element distortion on the performance of isoparametric elements[J]. Int J Numer Methods Engrg,1993,36(20): 3553-3576. doi: 10.1002/nme.1620362009
    [3]
    Long Y Q,Li J X,Long Z F,et al.Area coordinates used in quadrilateral element[J]. Commun Numer Methods Engrg,1999,15(8): 533-545. doi: 10.1002/(SICI)1099-0887(199908)15:8<533::AID-CNM265>3.0.CO;2-D
    [4]
    Cen S,Chen X M,Fu X R. Quadrilateral membrane element family formulated by the quadrilateral area coordinate method[J]. Comput Methods Appl Mech Engrg,2007,196(41/44): 4337-4353. doi: 10.1016/j.cma.2007.05.004
    [5]
    李勇东,陈万吉. 精化不协调平面八节点元[J]. 计算力学学报,1997,14(3): 276-285.
    [6]
    Li C J,Wang R H. A new 8-node quadrilateral spline finite element[J]. J Comput Appl Math,2006,195(1/2): 54-65. doi: 10.1016/j.cam.2005.07.017
    [7]
    Rathod H T,Kilari S. General complete Lagrange family for the cube in finite element interpolations[J]. Comput Methods Appl Mech Engrg,2000,181(1/3): 295-344. doi: 10.1016/S0045-7825(99)00080-8
    [8]
    Ho S P,Yeh Y L. The use of 2D enriched elements with bubble functions for finite element  ̄analysis[J]. Computers and Structures,2006,84(29/30): 2081-2091. doi: 10.1016/j.compstruc.2006.04.008
    [9]
    Wang R H. The structural characterization and interpolation for multivariate splines[J]. Acta Math Sinica,1975,18(2): 91-106.
    [10]
    Wang R H. Multivariate Spline Functions and Their Applications[M]. Beijing,New York,Dordrecht,Boston,London: Science Press,Kluwer Academic Publishers,2001.
    [11]
    Farin G. Triangular Bernstein-Bézier patches[J]. Computer Aided Geometric Design,1986,3(2): 83-127. doi: 10.1016/0167-8396(86)90016-6
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1682) PDF downloads(892) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return