LI Shu-min, HE Tian-lan. Dynamical Behavior of Traveling Wave Solutions in the Ion Acoustic Plasma Equations[J]. Applied Mathematics and Mechanics, 2010, 31(1): 111-116. doi: 10.3879/j.issn.1000-0887.2010.01.012
Citation:
LI Shu-min, HE Tian-lan. Dynamical Behavior of Traveling Wave Solutions in the Ion Acoustic Plasma Equations[J]. Applied Mathematics and Mechanics, 2010, 31(1): 111-116. doi: 10.3879/j.issn.1000-0887.2010.01.012
LI Shu-min, HE Tian-lan. Dynamical Behavior of Traveling Wave Solutions in the Ion Acoustic Plasma Equations[J]. Applied Mathematics and Mechanics, 2010, 31(1): 111-116. doi: 10.3879/j.issn.1000-0887.2010.01.012
Citation:
LI Shu-min, HE Tian-lan. Dynamical Behavior of Traveling Wave Solutions in the Ion Acoustic Plasma Equations[J]. Applied Mathematics and Mechanics, 2010, 31(1): 111-116. doi: 10.3879/j.issn.1000-0887.2010.01.012
By using the theory of planar dynamical systems to the ion acoustic plasm a equations, the existence of smooth and non-smooth solitary wave solution s and uncountably infinite smooth and non-smooth periodic wave solutions is obtained. Furthermore, Under given parametric conditions, the sufficient conditions which guarantee the existence of the above solutions are given.
Haragus M, Scheel A. Linear stability and instability of ion-acoustic plasmas solitary waves[J]. Physica D,2002, 170(1):13-30. doi: 10.1016/S0167-2789(02)00531-6
[2]
LI Yi, Sattinger D H. Soliton collisions in the ion acoustic plasmas equations[J]. Journal of Mathematics and Fluid Mechanics,1999, 1(1): 117-130. doi: 10.1007/s000210050006
[3]
LI Ji-bin, LIU Zheng-rong. Smooth and non-smooth traveling waves in a nonlinearly dispersive equation[J].Applied Mathematical Modelling, 2000, 25(1):41-56. doi: 10.1016/S0307-904X(00)00031-7
[4]
LI Ji-bin, DAI Hui-hui. On the Study of Singular Nonlinear Travelling Wave Equations: Dynamical Approach[M]. Beijing: Science Press, 2007.
[5]
Perko L M. Bifurcation of Limit Cycles[M].Lecture Notes in Math.New York: Springer-Verlag,1455, 1990: 315-333.