CHAO Kan, WU Jian-kang, CHEN Bo. Joule Heating Effect of Electroosmosis in a Finite-Length Microchannel Made of Different Materials[J]. Applied Mathematics and Mechanics, 2010, 31(1): 102-110. doi: 10.3879/j.issn.1000-0887.2010.01.011
Citation: CHAO Kan, WU Jian-kang, CHEN Bo. Joule Heating Effect of Electroosmosis in a Finite-Length Microchannel Made of Different Materials[J]. Applied Mathematics and Mechanics, 2010, 31(1): 102-110. doi: 10.3879/j.issn.1000-0887.2010.01.011

Joule Heating Effect of Electroosmosis in a Finite-Length Microchannel Made of Different Materials

doi: 10.3879/j.issn.1000-0887.2010.01.011
  • Received Date: 2009-04-11
  • Rev Recd Date: 2009-12-02
  • Publish Date: 2010-01-15
  • A numerical analysis was presented to study Joule heating effect of electroosmosis in a finite-length microchannel made of glass and PDMS polymer. Poisson-Boltzmann equation of electric double layer, Navier-Stokes equation of liquid flow and liquid-solid coupled heat transfer equation were solved to investigate temperature behavior of electroosmosis in two-dmiensional microchannel. The feedback effect of temperature variation on liquid properties (dielectric constant, viscosity, thermal and electric conductivities) was taken in to account. Numerical results indicate that there exists a heat developing length near channel in let where flow velocity, temperature, pressure, electric field rapidly vary. The flow velocity, electric field and temperature approach to a steady state after heat developing length, which may occupy a considerable portion of the microchannel in cases of thickchip and high electric field. Liquid temperature of steady state increases with increase of applied electric field, channel thickness and chip thickness. The temperature on PDMS wall is higher than that on glass wall due to difference of heat conductivities. Temperature variations are found in both longitudinal and tran sverse derictions of the microchannel. Temperature increase on wall decreases charge density of the electric double layer. Longitudinal temperature variation induces a pressure gradient and changes behavior of electric field in microchannel. In flow liquid temperature does not change liquid temperature of steady state and heat developing length.
  • loading
  • [1]
    Bayraktar Tuba,Pidugu Srikanth B. Characterization of liquid flows in microfluidic systems[J]. Int J Heat and Mass Transfer,2006,49(5/6): 815-824. doi: 10.1016/j.ijheatmasstransfer.2005.11.007
    [2]
    Stone H A,Stroock A D,Ajdari A. Engineering flows in small devices: microfluidics toward a lab-on-a-chip[J]. Annu Rev Fluid Mech,2004,36: 381-411. doi: 10.1146/annurev.fluid.36.050802.122124
    [3]
    Probstein R F. Physicochemical Hydrodynamics: An Introduction[M]. New York: John Wiley & Sons,1994.
    [4]
    Jones A E,Grushka E. Nature of temperature gradients in capillary zone electrophoresis[J]. J Chromatogr,1989,466: 219-225. doi: 10.1016/S0021-9673(01)84618-5
    [5]
    Knox J H. Thermal effects and band spreading in capillary electro-separation[J]. Chromatographia,1988,26(1): 329-337. doi: 10.1007/BF02268176
    [6]
    Grushka E,McCormick R M,Kirkland J J. Effect of temperature gradients on the efficiency of capillary zone electrophoresis separations[J]. Anal Chem,1989,61(3): 241-246. doi: 10.1021/ac00178a011
    [7]
    Knox J H,McCormack K A. Temperature effects in capillary electrophoresis—1: internal capillary temperature and effect upon performance[J]. Chromatographia,1994,38(3/4):207-214; 2: theoretical calculations and predictions[J]. Chromatographia,1994,38(3/4): 215-221. doi: 10.1007/BF02290338
    [8]
    Azad Qazi Zade,Manzari Mehrdad T,Hannani Siamak K. An analytical solution for thermally fully developed combined pressure-electroosmotically driven flow in microchannels[J]. Int J Heat Mass Transfer,2007,50(5/6): 1087-1096. doi: 10.1016/j.ijheatmasstransfer.2006.07.037
    [9]
    Horiuchi Keisuke,Dutta P. Joule heating effects in electroosmotically driven microchannel flows[J]. Int J Heat and Mass Transfer,2004,47(14/16): 3085-3095. doi: 10.1016/j.ijheatmasstransfer.2004.02.020
    [10]
    Dutta P,Horiuchi Keisuke. Thermal characteristics of mixed electroosmotic and pressure-driven microflows[J]. Comput Math Appl,2006,52(5): 651-670. doi: 10.1016/j.camwa.2006.10.002
    [11]
    Tang G Y,Yang C,Chai J C,et al. Numerical analysis of the thermal effect on electroosmotic flow and electrokinetic mass transport in microchannels[J]. Anal Chim Acta,2004,507(1): 27-37. doi: 10.1016/j.aca.2003.09.066
    [12]
    Tang G Y,Yang C,Chai J C,et al. Joule heating effect on electroosmotic flow and mass species transport in a microcapillary[J]. Int J Heat and Mass Transfer,2004,47(2): 215-227. doi: 10.1016/j.ijheatmasstransfer.2003.07.006
    [13]
    TANG Gong-yue,YAN De-guang,YANG Chun,et al. Joule heating and its effects on electrokinetic transport of solutes in rectangular microchannels[J]. Sens Actuators A,2007,139(1/2): 221-232. doi: 10.1016/j.sna.2007.06.002
    [14]
    XUAN Xiang-chun,Sinton David,LI Dong-qing. Thermal end effects on electroosmotic flow in a capillary[J]. Int J Heat and Mass Transfer,2004,47(14/16): 3145-3157.
    [15]
    Eteshola E,Leckband D. Development and characterization of an ELISA assay in PDMS microfluidic channels[J]. Sens Actuators B,2001,72(2): 129-133. doi: 10.1016/S0925-4005(00)00640-7
    [16]
    Brugger J,Beljakovic G,Despont M,et al. Low-cost PDMS seal ring for single-side wet etching of MEMS structures[J]. Sens Actuators A,1998,70(1/2): 191-194. doi: 10.1016/S0924-4247(98)00132-0
    [17]
    Fu R,Xu B,Li D. Study of the temperature field in microchannels of a PDMS chip with embedded local heater using temperature-dependent fluorescent dye[J]. Int J Thermal Sciences,2006,45(9): 841-847. doi: 10.1016/j.ijthermalsci.2005.11.009
    [18]
    Jeong Ok Chan,Konishi Satoshi. Fabrication and drive test of pneumatic PDMS micro pump[J]. Sens Actuators A,2007,135(2): 849-856. doi: 10.1016/j.sna.2006.09.012
    [19]
    Weast R C,Astle M J,Beyer W H. CRC Handbook of Chemistry and Physics[M]. Boca Raton: CRC Press,1986.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1443) PDF downloads(811) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return