Citation: | CHAO Kan, WU Jian-kang, CHEN Bo. Joule Heating Effect of Electroosmosis in a Finite-Length Microchannel Made of Different Materials[J]. Applied Mathematics and Mechanics, 2010, 31(1): 102-110. doi: 10.3879/j.issn.1000-0887.2010.01.011 |
[1] |
Bayraktar Tuba,Pidugu Srikanth B. Characterization of liquid flows in microfluidic systems[J]. Int J Heat and Mass Transfer,2006,49(5/6): 815-824. doi: 10.1016/j.ijheatmasstransfer.2005.11.007
|
[2] |
Stone H A,Stroock A D,Ajdari A. Engineering flows in small devices: microfluidics toward a lab-on-a-chip[J]. Annu Rev Fluid Mech,2004,36: 381-411. doi: 10.1146/annurev.fluid.36.050802.122124
|
[3] |
Probstein R F. Physicochemical Hydrodynamics: An Introduction[M]. New York: John Wiley & Sons,1994.
|
[4] |
Jones A E,Grushka E. Nature of temperature gradients in capillary zone electrophoresis[J]. J Chromatogr,1989,466: 219-225. doi: 10.1016/S0021-9673(01)84618-5
|
[5] |
Knox J H. Thermal effects and band spreading in capillary electro-separation[J]. Chromatographia,1988,26(1): 329-337. doi: 10.1007/BF02268176
|
[6] |
Grushka E,McCormick R M,Kirkland J J. Effect of temperature gradients on the efficiency of capillary zone electrophoresis separations[J]. Anal Chem,1989,61(3): 241-246. doi: 10.1021/ac00178a011
|
[7] |
Knox J H,McCormack K A. Temperature effects in capillary electrophoresis—1: internal capillary temperature and effect upon performance[J]. Chromatographia,1994,38(3/4):207-214; 2: theoretical calculations and predictions[J]. Chromatographia,1994,38(3/4): 215-221. doi: 10.1007/BF02290338
|
[8] |
Azad Qazi Zade,Manzari Mehrdad T,Hannani Siamak K. An analytical solution for thermally fully developed combined pressure-electroosmotically driven flow in microchannels[J]. Int J Heat Mass Transfer,2007,50(5/6): 1087-1096. doi: 10.1016/j.ijheatmasstransfer.2006.07.037
|
[9] |
Horiuchi Keisuke,Dutta P. Joule heating effects in electroosmotically driven microchannel flows[J]. Int J Heat and Mass Transfer,2004,47(14/16): 3085-3095. doi: 10.1016/j.ijheatmasstransfer.2004.02.020
|
[10] |
Dutta P,Horiuchi Keisuke. Thermal characteristics of mixed electroosmotic and pressure-driven microflows[J]. Comput Math Appl,2006,52(5): 651-670. doi: 10.1016/j.camwa.2006.10.002
|
[11] |
Tang G Y,Yang C,Chai J C,et al. Numerical analysis of the thermal effect on electroosmotic flow and electrokinetic mass transport in microchannels[J]. Anal Chim Acta,2004,507(1): 27-37. doi: 10.1016/j.aca.2003.09.066
|
[12] |
Tang G Y,Yang C,Chai J C,et al. Joule heating effect on electroosmotic flow and mass species transport in a microcapillary[J]. Int J Heat and Mass Transfer,2004,47(2): 215-227. doi: 10.1016/j.ijheatmasstransfer.2003.07.006
|
[13] |
TANG Gong-yue,YAN De-guang,YANG Chun,et al. Joule heating and its effects on electrokinetic transport of solutes in rectangular microchannels[J]. Sens Actuators A,2007,139(1/2): 221-232. doi: 10.1016/j.sna.2007.06.002
|
[14] |
XUAN Xiang-chun,Sinton David,LI Dong-qing. Thermal end effects on electroosmotic flow in a capillary[J]. Int J Heat and Mass Transfer,2004,47(14/16): 3145-3157.
|
[15] |
Eteshola E,Leckband D. Development and characterization of an ELISA assay in PDMS microfluidic channels[J]. Sens Actuators B,2001,72(2): 129-133. doi: 10.1016/S0925-4005(00)00640-7
|
[16] |
Brugger J,Beljakovic G,Despont M,et al. Low-cost PDMS seal ring for single-side wet etching of MEMS structures[J]. Sens Actuators A,1998,70(1/2): 191-194. doi: 10.1016/S0924-4247(98)00132-0
|
[17] |
Fu R,Xu B,Li D. Study of the temperature field in microchannels of a PDMS chip with embedded local heater using temperature-dependent fluorescent dye[J]. Int J Thermal Sciences,2006,45(9): 841-847. doi: 10.1016/j.ijthermalsci.2005.11.009
|
[18] |
Jeong Ok Chan,Konishi Satoshi. Fabrication and drive test of pneumatic PDMS micro pump[J]. Sens Actuators A,2007,135(2): 849-856. doi: 10.1016/j.sna.2006.09.012
|
[19] |
Weast R C,Astle M J,Beyer W H. CRC Handbook of Chemistry and Physics[M]. Boca Raton: CRC Press,1986.
|