GE Ming-wei, XU Chun-xiao, CUI Gui-xiang. Direct Numerical Simulation of Flow in a Channel With Time-Dependent Wall Geometry[J]. Applied Mathematics and Mechanics, 2010, 31(1): 91-101. doi: 10.3879/j.issn.1000-0887.2010.01.010
Citation: GE Ming-wei, XU Chun-xiao, CUI Gui-xiang. Direct Numerical Simulation of Flow in a Channel With Time-Dependent Wall Geometry[J]. Applied Mathematics and Mechanics, 2010, 31(1): 91-101. doi: 10.3879/j.issn.1000-0887.2010.01.010

Direct Numerical Simulation of Flow in a Channel With Time-Dependent Wall Geometry

doi: 10.3879/j.issn.1000-0887.2010.01.010
  • Received Date: 2009-05-13
  • Rev Recd Date: 2009-11-26
  • Publish Date: 2010-01-15
  • A numerical scheme was developed to extend the scope of the spectralm ethod without solving the covariant and contra-variant form of Navier-Stokes equations in curvilinear coordinates. The primitive variables were rep resented by Fourier series and Chebyshev polynomials in computational space. The time advan cement was accom plished by a high-order tmie-splitting method, and a corresponding high-order pressure condition at the wall was in troduced to reduce the splitting error. Compared with the previous pseudo-spectral scheme, in which the Navier-Stokes equations were solved in covariant and contra-variant form, the present scheme reduced the computational cost, at the same time kept the spectral accuracy. The scheme was tested by the simulation of turbulent flow in a channel with a static streamwise wavy wall and turbulent flow over a flexible wallundergoing streamwise traveling wave motion. Turbulent flow over an oscillating dimple was studied using present numerical scheme, and the periodic generation of vortical structures was analyzed.
  • loading
  • [1]
    Moin P, Mahesh K. Direct numerical simulation: a tool in turbulence research[J]. Annual Review of Fluid Mechanics, 1998, 30:539-578. doi: 10.1146/annurev.fluid.30.1.539
    [2]
    Mani R, Lagoudas D C, Rediniotis O K. Active skin for turbulent drag reduction[J]. Smart Materials and Structures, 2008, 17(3):035004. doi: 10.1088/0964-1726/17/3/035004
    [3]
    Gad-el-Hak M. Compliant coatings for drag reduction[J]. Progress in Aerospace Sciences,2002, 38(1):77-99. doi: 10.1016/S0376-0421(01)00020-3
    [4]
    Orszag S A, Patterson G S. Numerical simulation of three-dimensional homogeneous isotropic turbulence[J]. Physical Review Letters, 1972, 28(2):76-79. doi: 10.1103/PhysRevLett.28.76
    [5]
    Kim J, Moin P, Moser R. Turbulence statistics in fully developed channel flow at low Reynolds number[J]. Journal of Fluid Mechanics, 1987, 177:133-166. doi: 10.1017/S0022112087000892
    [6]
    Carlson H A, Berkooz G, Lumley J L. Direct numerical simulation of flow in a channel with complex time-dependent wall geometries: a pseudospectral method[J]. Journal of Computational Physics, 1995, 121(1):155-175. doi: 10.1006/jcph.1995.1186
    [7]
    Luo H, Bewley T R. On the contravariant form of the Navier-Stokes equations in time-dependent curvilinear coordinate systems[J]. Journal of Computational Physics, 2004, 199(1):355-375. doi: 10.1016/j.jcp.2004.02.012
    [8]
    Kang S, Choi H. Active wall motions for skin-friction drag reduction[J]. Physics of Fluids, 2000, 12(12):3301-3304. doi: 10.1063/1.1320833
    [9]
    Shen L, Zhang X, Yue D K P, et al. Turbulence flow over a flexible wall undergoing a streamwise traveling wave motion[J]. Journal of Fluid Mechanics, 2003, 484:197-221. doi: 10.1017/S0022112003004294
    [10]
    Karniadakis G E, Isreali M, Orszag S A. High-order splitting methods for the incompressible Navier-Stokes equations[J].Journal of Computational Physics, 1991, 97(2):414-443. doi: 10.1016/0021-9991(91)90007-8
    [11]
    Xu C, Zhang Z, Nieuwstadt F T M, et al.Origin of high kurtosis levels in the viscous sublayer. direct numerical simulation and experiment[J].Physics of Fluids, 1996, 8(7): 1938-1944. doi: 10.1063/1.868973
    [12]
    Angelis V D, Lombardi P, Banerjee S. Direct numerical simulation of turbulent flow over a wavy wall[J].Physics of Fluids, 1997, 9(8):2429-2442. doi: 10.1063/1.869363
    [13]
    Dukowicz J K, Dvinsky A S. Approximate factorization as a high order splitting for the implicit incompressible flow equations[J]. Journal of Computational Physics, 1992, 102(2):336-347. doi: 10.1016/0021-9991(92)90376-A
    [14]
    Gresho P M. On the theory of semi-implicit projection methods for viscous incompressible flow and its implementation via a finite element method that also introduces a nearly consistent mass matrix—part 1: theory[J]. International Journal for Numerical Methods in Fluids, 1990, 11(5):587-620. doi: 10.1002/fld.1650110509
    [15]
    Marcus P S. Simulation of the Taylor-Couette flow—part 1:numerical methods and comparison with experiments[J]. Journal of Fluid Mechanics, 1984, 146:45-46. doi: 10.1017/S0022112084001762
    [16]
    Kleizer L, Schumman U. Treatment of incompressibility and boundary conditions in 3-D numerical spectral simulations of plane channel flow[C]Hirschel E H.Proc 3rd GAMM Conf Numerical Methods in Fluid Mechanics.Cologne,1979.
    [17]
    Hudson J D, Dykhno L, Hanratty T J. Turbulence production in flow over a wavy wall[J].Experiments in Fluids, 1996, 20(4):257-265.
    [18]
    Cherukat P, Na Y, Hanratty T J, et al. Direct numerical simulation of a fully developed turbulent flow over a wavy wall[J]. Theoretical and Computational Fluid Dynamics, 1998, 11(2):109-134. doi: 10.1007/s001620050083
    [19]
    Hunt J C F, Wray A A, Moin P. Eddies, stream, and convergence zones in turbulent flows[R]. Center for Turbulence Research, 1988, CTR-S88:193-208.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1602) PDF downloads(881) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return