Citation: | GE Ming-wei, XU Chun-xiao, CUI Gui-xiang. Direct Numerical Simulation of Flow in a Channel With Time-Dependent Wall Geometry[J]. Applied Mathematics and Mechanics, 2010, 31(1): 91-101. doi: 10.3879/j.issn.1000-0887.2010.01.010 |
[1] |
Moin P, Mahesh K. Direct numerical simulation: a tool in turbulence research[J]. Annual Review of Fluid Mechanics, 1998, 30:539-578. doi: 10.1146/annurev.fluid.30.1.539
|
[2] |
Mani R, Lagoudas D C, Rediniotis O K. Active skin for turbulent drag reduction[J]. Smart Materials and Structures, 2008, 17(3):035004. doi: 10.1088/0964-1726/17/3/035004
|
[3] |
Gad-el-Hak M. Compliant coatings for drag reduction[J]. Progress in Aerospace Sciences,2002, 38(1):77-99. doi: 10.1016/S0376-0421(01)00020-3
|
[4] |
Orszag S A, Patterson G S. Numerical simulation of three-dimensional homogeneous isotropic turbulence[J]. Physical Review Letters, 1972, 28(2):76-79. doi: 10.1103/PhysRevLett.28.76
|
[5] |
Kim J, Moin P, Moser R. Turbulence statistics in fully developed channel flow at low Reynolds number[J]. Journal of Fluid Mechanics, 1987, 177:133-166. doi: 10.1017/S0022112087000892
|
[6] |
Carlson H A, Berkooz G, Lumley J L. Direct numerical simulation of flow in a channel with complex time-dependent wall geometries: a pseudospectral method[J]. Journal of Computational Physics, 1995, 121(1):155-175. doi: 10.1006/jcph.1995.1186
|
[7] |
Luo H, Bewley T R. On the contravariant form of the Navier-Stokes equations in time-dependent curvilinear coordinate systems[J]. Journal of Computational Physics, 2004, 199(1):355-375. doi: 10.1016/j.jcp.2004.02.012
|
[8] |
Kang S, Choi H. Active wall motions for skin-friction drag reduction[J]. Physics of Fluids, 2000, 12(12):3301-3304. doi: 10.1063/1.1320833
|
[9] |
Shen L, Zhang X, Yue D K P, et al. Turbulence flow over a flexible wall undergoing a streamwise traveling wave motion[J]. Journal of Fluid Mechanics, 2003, 484:197-221. doi: 10.1017/S0022112003004294
|
[10] |
Karniadakis G E, Isreali M, Orszag S A. High-order splitting methods for the incompressible Navier-Stokes equations[J].Journal of Computational Physics, 1991, 97(2):414-443. doi: 10.1016/0021-9991(91)90007-8
|
[11] |
Xu C, Zhang Z, Nieuwstadt F T M, et al.Origin of high kurtosis levels in the viscous sublayer. direct numerical simulation and experiment[J].Physics of Fluids, 1996, 8(7): 1938-1944. doi: 10.1063/1.868973
|
[12] |
Angelis V D, Lombardi P, Banerjee S. Direct numerical simulation of turbulent flow over a wavy wall[J].Physics of Fluids, 1997, 9(8):2429-2442. doi: 10.1063/1.869363
|
[13] |
Dukowicz J K, Dvinsky A S. Approximate factorization as a high order splitting for the implicit incompressible flow equations[J]. Journal of Computational Physics, 1992, 102(2):336-347. doi: 10.1016/0021-9991(92)90376-A
|
[14] |
Gresho P M. On the theory of semi-implicit projection methods for viscous incompressible flow and its implementation via a finite element method that also introduces a nearly consistent mass matrix—part 1: theory[J]. International Journal for Numerical Methods in Fluids, 1990, 11(5):587-620. doi: 10.1002/fld.1650110509
|
[15] |
Marcus P S. Simulation of the Taylor-Couette flow—part 1:numerical methods and comparison with experiments[J]. Journal of Fluid Mechanics, 1984, 146:45-46. doi: 10.1017/S0022112084001762
|
[16] |
Kleizer L, Schumman U. Treatment of incompressibility and boundary conditions in 3-D numerical spectral simulations of plane channel flow[C]Hirschel E H.Proc 3rd GAMM Conf Numerical Methods in Fluid Mechanics.Cologne,1979.
|
[17] |
Hudson J D, Dykhno L, Hanratty T J. Turbulence production in flow over a wavy wall[J].Experiments in Fluids, 1996, 20(4):257-265.
|
[18] |
Cherukat P, Na Y, Hanratty T J, et al. Direct numerical simulation of a fully developed turbulent flow over a wavy wall[J]. Theoretical and Computational Fluid Dynamics, 1998, 11(2):109-134. doi: 10.1007/s001620050083
|
[19] |
Hunt J C F, Wray A A, Moin P. Eddies, stream, and convergence zones in turbulent flows[R]. Center for Turbulence Research, 1988, CTR-S88:193-208.
|