Citation: | Ivan Šestak, Bo>>ko S. Jovanović. Approximation of Thermoelasticity Contact Problem With Nonmonotone Friction[J]. Applied Mathematics and Mechanics, 2010, 31(1): 71-80. doi: 10.3879/j.issn.1000-0887.2010.01.008 |
[1] |
Panagiotopoulos P D.Inequality Problems in Mechanics and Applications: Convex and Nonconvex Energy Functions[M]. Boston, Basel, Stuttgart: Birkhuser, 1985.
|
[2] |
Panagiotopoulos P D.Hemivariational Inequalities: Applications in Mechanics and Engineering[M]. Berlin, Heidelberg, New York: Springer, 1993.
|
[3] |
Denkowski Z, Migórski S. A system of evolution hemivariational inequalities modeling thermoviscoelastic frictional contact[J].Nonlinear Analysis, 2005, 60(8): 1415-1441. doi: 10.1016/j.na.2004.11.004
|
[4] |
Goeleven D, Motreanu D, Dumont Y,et al.Variational and Hemivariational Inequalities. Theory, Methods and Applications, Volume Ⅰ: Unilateral Analysis and Unilateral Mechanics[M]. Boston, Dordrecht, London: Kluwer, 2003.
|
[5] |
Goeleven D, Motreanu D.Variational and Hemivariational Inequalities. Theory, Methods and Applications, Volume Ⅱ: Unilateral Problems[M]. Dordrecht, London: Kluwer, 2003.
|
[6] |
Naniewicz Z, Panagiotopoulos P D.Mathematical Theory of Hemivariational Inequalities and Applications[M]. New York, Basel, Hong Kong: Marcel Dekker, 1995.
|
[7] |
Haslinger J, Miettinen M, Panagiotopoulos P D.Finite Element Method for Hemivariational Inequalities. Nonconvex Optimization and Its Applications[M].Vol 35, Dordrecht: Kluwer, 1999.
|
[8] |
Baniotopoulos C C, Haslinger J, Morávková Z. Mathematical modeling of delamination and nonmonotone friction problems by hemivariational inequalities[J].Appl Math, 2005, 50(1): 1-25. doi: 10.1007/s10492-005-0001-7
|
[9] |
Miettinen M, Haslinger J. Approximation of nonmonotone multivalued differential inclusions[J].IMA J Numer Anal, 1995, 15(4): 475-503. doi: 10.1093/imanum/15.4.475
|
[10] |
Miettinen M, Mkel M M, Haslinger J. On numerical solution of hemivariational inequalities by nonsmooth optimization methods[J].J Global Optimization, 1995, 6(4): 401-425. doi: 10.1007/BF01100086
|
[11] |
Miettinen M, Haslinger J. Finite element approximation of vector-valued hemivariational problems[J].J Global Optimization, 1997, 10(1): 17-35. doi: 10.1023/A:1008234502169
|
[12] |
Lukan L, Vlcˇek J. A bundle-Newton method for nonsmooth unconstrained minimization[J].Math Prog, 1998, 83(1/3): 373-391.
|
[13] |
Baniotopoulos C C, Haslinger J, Morávková Z.Contact problems with nonmonotone friction: discretization and numerical realization[J].Comput Mech, 2007, 40(1): 157-165. doi: 10.1007/s00466-006-0092-3
|
[14] |
Adams R S. Sobolev Spaces.Pure and Applied Mathematics[M].Vol 65.New York,London: Academic Press, 1975.
|
[15] |
Kufner A, John O, Fucˇik S.Function Spaces[M]. Leyden: Noordhoff International Publishing and Prague: Academia, 1977.
|
[16] |
Necˇas J.Les Méthodes Directes en Théorie des quations Elliptiques[M]. Paris: Masson, 1967.
|
[17] |
Clarke F H.Optimization and Nonsmooth Analysis[M]. New York, Chichester, Brisbane, Toronto and Singapore: Wiley, 1983.
|
[18] |
Ciarlet P G.The Finite Element Method for Elliptic Problems[M]. Amsterdam: North-Holland, 1978.
|
[19] |
Glowinski R, Lions J L. Trémoliéres R.Numerical Analysis of Variational Inequalities. Series in Mathematics and Applications[M]. Vol 8. Amsterdam: North-Holland, 1981.
|