YIN Ya-jun, LI Ying, YANG Fan, FAN Qin-shan. Multiple Cell Elements and Regular Multifractals[J]. Applied Mathematics and Mechanics, 2010, 31(1): 51-60. doi: 10.3879/j.issn.1000-0887.2010.01.006
Citation: YIN Ya-jun, LI Ying, YANG Fan, FAN Qin-shan. Multiple Cell Elements and Regular Multifractals[J]. Applied Mathematics and Mechanics, 2010, 31(1): 51-60. doi: 10.3879/j.issn.1000-0887.2010.01.006

Multiple Cell Elements and Regular Multifractals

doi: 10.3879/j.issn.1000-0887.2010.01.006
  • Received Date: 2009-07-09
  • Rev Recd Date: 2009-11-10
  • Publish Date: 2010-01-15
  • Based on fractal super fibers and binary fractal fibers, the following objectives were approached: Firstly, the concept of multiple celle lements was induced and abstracted. Secondly, th rough multiple cell elements, regular multifractals with strict self-similarities were confirmed not only constructible, but also being of universal construction mode. Thirdly, through the construction mode, a regular multifractal was found to be equivalent to a generalized regular single fractal with multiple fine structures under the meaning of multiple cellelements. On the basis of this equivalence, the dimension of single fractals was extended to that of regular multifractals, and the geometry of single fractals was extended to that of regular multifractals. Fourthly, through regular multifractals a few golden fractals were constructed.
  • loading
  • [1]
    YIN Ya-jun, ZHANG Tong, YANG Fan, et al. Geometric conditions for fractal super carbon nanotubes with strict self-similarities [J]. Chaos, Solitons and Fractals, 2008, 37(5): 1257-1266. doi: 10.1016/j.chaos.2008.01.005
    [2]
    YIN Ya-jun, YANG Fan, ZHANG Tong, et al. Growth condition and growth limit for fractal super fibers and fractal super tubes [J]. International Journal of Nonlinear Sciences and Numerical Simulations, 2008, 9(1): 96-102.
    [3]
    YIN Ya-jun, YANG Fan, FAN Qin-shan, et al. Cell elements, growth modes and topology  ̄evolutions of fractal supper fibers [J]. International Journal of Nonlinear Sciences and Numerical Simulation, 2009, 10(1): 1-12. doi: 10.1515/IJNSNS.2009.10.1.1
    [4]
    YIN Ya-jun, YANG Fan, FAN Qin-shan. Isologous fractal super fibers or fractal super lattices [J]. International Journal of Electrospun Nanofibers and Applications, 2008, 2(3): 193-201.
    [5]
    FAN Jie, LIU Jun-fang, HE Ji-huan. Hierarchy of wool fibers and fractal dimensions [J]. International Journal of Nonlinear Sciences and Numerical Simulation, 2008, 9(3): 293-296.
    [6]
    HE Ji-huan, REN Zhong-fu, FAN Jie, et al. Hierarchy of wool fibers and its interpretation using E-infinity theory [J]. Chaos, Solitons and Fractals, 2009, 41(4):1839-1841. doi: 10.1016/j.chaos.2008.07.035
    [7]
    殷雅俊,杨帆,李颖,等.从毛发纤维中抽象出的分形几何与拓扑 [J].应用数学和力学, 2009, 30(8): 919-926.
    [8]
    黄立基,丁菊仁. 多标度分形理论及进展 [J].物理学进展,1991, 11(3): 69-330.
    [9]
    Mandelbrot B B. On the intermittent free turbulence [C]Weber E.Proc Symp Turbulence of Fluid and Plasma . New York: Interscience, 1969:483-492.
    [10]
    Grassberger P. Generalized dimensions of strange attractors [J]. Physics Letters A, 1983, 97(6): 227-230. doi: 10.1016/0375-9601(83)90753-3
    [11]
    Hentschel H, Procaccia I.The infinite number of generalized dimensions of fractals and strange attractors [J]. Physica D, 1983, 8(3): 435-444. doi: 10.1016/0167-2789(83)90235-X
    [12]
    Frisch U, Parisi G.On the singularity structure of fully developed turbulence [C] Ghil M, Benzi R, Parisi G. Turbulence and Predictability in Geophysical Fluid Dynamics and Climate Dynamics. Amsterdam: North-Holland, 1985:84-87.
    [13]
    Benzi R, Paladin G, Parisi G, et al.On the multifractal nature of fully developed turbulence and chaotic systems [J]. J Phys A, 1984, 17(18): 3521-3531. doi: 10.1088/0305-4470/17/18/021
    [14]
    Helsey T, Jensen M H, Kadanoff L P,et al.Fractal measures and their singularities: the characterization of strange sets [J]. Phys Rev A, 1986, 33(2): 1141-1151. doi: 10.1103/PhysRevA.33.1141
    [15]
    Bensimon D, Jensen M H, Kadanoff L P.Renormalization-group analysis of the global structure of the period-doubling attractor [J]. Phys Rev A, 1986, 33(5): 3622-3624. doi: 10.1103/PhysRevA.33.3622
    [16]
    Feigenbaum M J, Jensen M H, Procaccia I I. Time ordering and the thermodynamics of strange sets: theory and experimental tests [J]. Phys Rev Lett, 1986, 57(13): 1503-1506. doi: 10.1103/PhysRevLett.57.1503
    [17]
    Feigenbaum M.Some characterizations of strange sets [J]. J Stat Phys, 1987, 46(5/6): 919-925. doi: 10.1007/BF01011148
    [18]
    成令忠,冯京生,冯子强,等.组织学彩色图鉴[M].北京:人民卫生出版社,2000.
    [19]
    周炜星,王延杰,于遵宏.多重分形奇异谱的几何特性(Ⅰ):经典Renyi定义法[J]. 华东理工大学学报,2000, 26(4): 385-389.
    [20]
    周炜星,王延杰,于遵宏.多重分形奇异谱的几何特性(Ⅱ):配分函数法 [J]. 华东理工大学学报,2000, 26(4): 390-395.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1381) PDF downloads(885) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return