Citation: | YIN Ya-jun, LI Ying, YANG Fan, FAN Qin-shan. Multiple Cell Elements and Regular Multifractals[J]. Applied Mathematics and Mechanics, 2010, 31(1): 51-60. doi: 10.3879/j.issn.1000-0887.2010.01.006 |
[1] |
YIN Ya-jun, ZHANG Tong, YANG Fan, et al. Geometric conditions for fractal super carbon nanotubes with strict self-similarities [J]. Chaos, Solitons and Fractals, 2008, 37(5): 1257-1266. doi: 10.1016/j.chaos.2008.01.005
|
[2] |
YIN Ya-jun, YANG Fan, ZHANG Tong, et al. Growth condition and growth limit for fractal super fibers and fractal super tubes [J]. International Journal of Nonlinear Sciences and Numerical Simulations, 2008, 9(1): 96-102.
|
[3] |
YIN Ya-jun, YANG Fan, FAN Qin-shan, et al. Cell elements, growth modes and topology  ̄evolutions of fractal supper fibers [J]. International Journal of Nonlinear Sciences and Numerical Simulation, 2009, 10(1): 1-12. doi: 10.1515/IJNSNS.2009.10.1.1
|
[4] |
YIN Ya-jun, YANG Fan, FAN Qin-shan. Isologous fractal super fibers or fractal super lattices [J]. International Journal of Electrospun Nanofibers and Applications, 2008, 2(3): 193-201.
|
[5] |
FAN Jie, LIU Jun-fang, HE Ji-huan. Hierarchy of wool fibers and fractal dimensions [J]. International Journal of Nonlinear Sciences and Numerical Simulation, 2008, 9(3): 293-296.
|
[6] |
HE Ji-huan, REN Zhong-fu, FAN Jie, et al. Hierarchy of wool fibers and its interpretation using E-infinity theory [J]. Chaos, Solitons and Fractals, 2009, 41(4):1839-1841. doi: 10.1016/j.chaos.2008.07.035
|
[7] |
殷雅俊,杨帆,李颖,等.从毛发纤维中抽象出的分形几何与拓扑 [J].应用数学和力学, 2009, 30(8): 919-926.
|
[8] |
黄立基,丁菊仁. 多标度分形理论及进展 [J].物理学进展,1991, 11(3): 69-330.
|
[9] |
Mandelbrot B B. On the intermittent free turbulence [C]Weber E.Proc Symp Turbulence of Fluid and Plasma . New York: Interscience, 1969:483-492.
|
[10] |
Grassberger P. Generalized dimensions of strange attractors [J]. Physics Letters A, 1983, 97(6): 227-230. doi: 10.1016/0375-9601(83)90753-3
|
[11] |
Hentschel H, Procaccia I.The infinite number of generalized dimensions of fractals and strange attractors [J]. Physica D, 1983, 8(3): 435-444. doi: 10.1016/0167-2789(83)90235-X
|
[12] |
Frisch U, Parisi G.On the singularity structure of fully developed turbulence [C] Ghil M, Benzi R, Parisi G. Turbulence and Predictability in Geophysical Fluid Dynamics and Climate Dynamics. Amsterdam: North-Holland, 1985:84-87.
|
[13] |
Benzi R, Paladin G, Parisi G, et al.On the multifractal nature of fully developed turbulence and chaotic systems [J]. J Phys A, 1984, 17(18): 3521-3531. doi: 10.1088/0305-4470/17/18/021
|
[14] |
Helsey T, Jensen M H, Kadanoff L P,et al.Fractal measures and their singularities: the characterization of strange sets [J]. Phys Rev A, 1986, 33(2): 1141-1151. doi: 10.1103/PhysRevA.33.1141
|
[15] |
Bensimon D, Jensen M H, Kadanoff L P.Renormalization-group analysis of the global structure of the period-doubling attractor [J]. Phys Rev A, 1986, 33(5): 3622-3624. doi: 10.1103/PhysRevA.33.3622
|
[16] |
Feigenbaum M J, Jensen M H, Procaccia I I. Time ordering and the thermodynamics of strange sets: theory and experimental tests [J]. Phys Rev Lett, 1986, 57(13): 1503-1506. doi: 10.1103/PhysRevLett.57.1503
|
[17] |
Feigenbaum M.Some characterizations of strange sets [J]. J Stat Phys, 1987, 46(5/6): 919-925. doi: 10.1007/BF01011148
|
[18] |
成令忠,冯京生,冯子强,等.组织学彩色图鉴[M].北京:人民卫生出版社,2000.
|
[19] |
周炜星,王延杰,于遵宏.多重分形奇异谱的几何特性(Ⅰ):经典Renyi定义法[J]. 华东理工大学学报,2000, 26(4): 385-389.
|
[20] |
周炜星,王延杰,于遵宏.多重分形奇异谱的几何特性(Ⅱ):配分函数法 [J]. 华东理工大学学报,2000, 26(4): 390-395.
|