Citation: | C. W. Lim. On the Truth of Nanoscale for Nanobeams Based on Nonlocal Elastic Stress Field Theory: Equilibrium,Governing Equation and Static Deflection[J]. Applied Mathematics and Mechanics, 2010, 31(1): 35-50. doi: 10.3879/j.issn.1000-0887.2010.01.005 |
[1] |
Iijima S.Helical microtubules of graphitic carbon[J].Nature,1991,354: 56-58. doi: 10.1038/354056a0
|
[2] |
Treacy M M J,Ebbesen T W,Gibson T M.Exceptionally high Young’s modulus observed for individual carbon nanotubes[J].Nature,1996,381: 680-687.
|
[3] |
Ball P.Roll up for the revolution[J].Nature,2001,414: 142-144. doi: 10.1038/35102721
|
[4] |
Iijima S,Brabec C,Maiti A,et al.Structural flexibility of carbon nanotubes[J].J Chem Phys,1996,104: 2089-2092. doi: 10.1063/1.470966
|
[5] |
Yakobson B I,Campbell M P,Brabec C J,et al.High strain rate fracture and C-chain unraveling in carbon nanotubes[J].Comput Mater Sci,1997,8: 341-348.
|
[6] |
He X Q,Kitipornchai S,Liew K M.Buckling analysis of multi-walled carbon nanotubes: a continuum model accounting for Van der Waals interaction[J].J Mech Phys Solids,2005,53: 303-326. doi: 10.1016/j.jmps.2004.08.003
|
[7] |
Yakobson B I,Brabec C J,Bernholc J.Nanomechanics of carbon tubes: instabilities beyond linear range[J].Phys Rev Lett,1996,76: 2511-2514. doi: 10.1103/PhysRevLett.76.2511
|
[8] |
Ru C Q.Effective bending stiffness of carbon nanotubes[J].Phys Rev B,2000,62: 9973-9976. doi: 10.1103/PhysRevB.62.9973
|
[9] |
Ru C Q.Elastic buckling of single-walled carbon nanotubes ropes under high pressure[J].Phys Rev B,2000,62: 10405-10408. doi: 10.1103/PhysRevB.62.10405
|
[10] |
Zhang P,Huang Y,Geubelle P H,et al.The elastic modulus of single-wall carbon nanotubes: a continuum analysis incorporating interatomic potentials[J].I J Solids Struct,2002,39: 3893-3906.
|
[11] |
Gurtin M E,Murdoch A.A continuum theory of elastic material surfaces[J].Archives of Rational Mechanics and Analysis,1975,57: 291-323.
|
[12] |
Gurtin M E,Murdoch A I.Effect of surface stress on wave propagation in solids[J].J Appl Phys,1976,47: 4414-4421. doi: 10.1063/1.322403
|
[13] |
He L H,Lim C W.On the bending of unconstrained thin crystalline plates caused by change in surface stress[J].Surface Sci,2001,478(3): 203-210. doi: 10.1016/S0039-6028(01)00953-0
|
[14] |
He L H,Lim C W,Wu B S.A continuum model for size-dependent deformation of elastic films of nano-scale thickness[J].I J Solids Struct,2004,41: 847-857.
|
[15] |
Lim C W,He L H.Size-dependent nonlinear response of thin elastic films with nano-scale thickness[J].I J Mech Sci,2004,46(11): 1715-1726.
|
[16] |
Lim C W,Li Z R,He L H.Size dependent,nonuniform elastic field inside a nano-scale spherical inclusion due to interface stress[J].I J Solids Struct,2006,43: 5055-5065.
|
[17] |
Wang Z Q,Zhao Y P,Huang Z P.The effects of surface tension on the elastic properties of nano structures[J].I J Engineering Science,2009.doi: 10.1016/j.ijengsci.2009.07.007
|
[18] |
Eringen A C.Linear theory of nonlocal elasticity and dispersion of plane waves[J].I J Engineering Science,1972,10(5): 425-435.
|
[19] |
Eringen A C.Nonlocal polar elastic continua[J].I J Engineering Science,1972,10(1): 1-16.
|
[20] |
Eringen A C.On nonlocal fluid mechanics[J].I J Engineering Science, 1972,10(6): 561-575.
|
[21] |
Eringen A C,Edelen D G B.On nonlocal elasticity[J].I J Engineering Science,1972,10(3): 233-248.
|
[22] |
Eringen A C.Linear theory of nonlocal microelasticity and dispersion of plane waves[J].Lett Appl Engng Sci,1973,1(2): 129-146.
|
[23] |
Eringen A C.On nonlocal microfluid mechanics[J].I J Engineering Science,1973,11(2): 291-306.
|
[24] |
Eringen A C.Theory of nonlocal electromagnetic elastic solids[J].J Math Phys,1973,14(6): 733-740. doi: 10.1063/1.1666387
|
[25] |
Eringen A C.Theory of nonlocal thermoelasticity[J].I J Engineering Science,1974,12: 1063-1077.
|
[26] |
Eringen A C.Memory-dependent nonlocal thermoelastic solids[J].Lett Appl Engng Sci,1974,2(3): 145-149.
|
[27] |
Eringen A C.Memory dependent nonlocal elastic solids[J].Lett Appl Engng Sci,2(3): 145-159.
|
[28] |
Eringen A C.Nonlocal elasticity and waves[C]Thoft-Christensen P.Continuum Mechanics Aspect of Geodynamics and Rock Fracture Mechanics.Netherlands: Kluwer Academic Publishers Group,1974:81-105.
|
[29] |
Eringen A C.Continuum Physics[M].Vol Ⅱ,Sect 1.3.New York: Academic Press,1975.
|
[30] |
Eringen A C.Nonlocal Polar Field Theories[M].New York: Academic,1976.
|
[31] |
Eringen A C.Mechanics of Continua[M].2nd ed.Melbourne,FL: Krieger,1980.
|
[32] |
Eringen A C.On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves[J].J Appl Phys,1983,54(9): 4703-4710. doi: 10.1063/1.332803
|
[33] |
Eringen A C.Theory of nonlocal piezoelectricity[J].J Math Phys,1984,25(3): 717-727. doi: 10.1063/1.526180
|
[34] |
Eringen A C.Point charge,infrared dispersion and conduction in nonlocal piezoelectricity[C]Maugin G A.The Mechanical Behavior of Electromagnetic Solid Continua.North-Holland: Elsevier Science,1984:187-196.
|
[35] |
Eringen A C.Nonlocal Continuum Field Theories[M].New York: Springer,2002.
|
[36] |
Peddieson J,Buchanan G R,McNitt R P.Application of nonlocal continuum models to nanotechnology[J].I J Engineering Science,2003,41(3/5): 305-312.
|
[37] |
Sudak L J.Column buckling of multiwalled carbon nanotubes using nonlocal continuum mechanics[J].J Appl Phys,2003,94(11): 7281-7287. doi: 10.1063/1.1625437
|
[38] |
Nix W,Gao H.Indentation size effects in crystalline materials: a law for strain gradient plasticity[J].Journal of the Mechanics and Physics of Solids,1998,46(3): 411-425. doi: 10.1016/S0022-5096(97)00086-0
|
[39] |
Lam D C C,Yang F,Chong A C M,et al.Experiments and theory in strain gradient elasticity[J].Journal of the Mechanics and Physics of Solids,2003,51: 1477-1508. doi: 10.1016/S0022-5096(03)00053-X
|
[40] |
Li C Y,Chou T W.Vibrational behaviors of multi-walled carbon nanotube-based nanomechanical resonators[J].Appl Phys Lett,2004,84: 121-123. doi: 10.1063/1.1638623
|
[41] |
Park S K,Gao X-L.Bernoulli-Euler beam model based on a modified couple stress theory[J].Journal of Micromechanics and Microengineering,2006,16: 2355-2359. doi: 10.1088/0960-1317/16/11/015
|
[42] |
Park S K,Gao X-L.Variational formulation of a modified couple stress theory and its application to a simple shear problem[J].Z Angew Math Phys,2008,59: 904-917. doi: 10.1007/s00033-006-6073-8
|
[43] |
Ma H M,Gao X-L,Reddy J N.A microstructure-dependent Timoshenko beam model based on a modified couple stress theory[J].Journal of the Mechanics and Physics of Solids,2008,56(12): 3379-3391. doi: 10.1016/j.jmps.2008.09.007
|
[44] |
Was G S,Foecke T.Deformation and fracture in microlaminates[J].Thin Solid Films,1996,286: 1-31. doi: 10.1016/S0040-6090(96)08905-5
|
[45] |
McFarland A W,Colton J S.Role of material microstructure in plate stiffness with relevance to microcantilever sensors[J].Journal of Micromechanics and Microengineering,2005,15: 1060-1067. doi: 10.1088/0960-1317/15/5/024
|
[46] |
Liew K M,Hu Y G,He X Q.Flexural wave propagation in single-walled carbon nanotubes[J].J Computational and Theoretical Nanoscience,2008,5: 581-586.
|
[47] |
Zhang Y Y,Wang C M,Duan W H,et al.Assessment of continuum mechanics models in predicting buckling strains of single-walled carbon nanotubes[J].Nanotechnology,2009,20, 395707. doi: 10.1088/0957-4484/20/39/395707
|
[48] |
Lim C W,Wang C M.Exact variational nonlocal stress modeling with asymptotic higher-order strain gradients for nanobeams[J].Journal of Applied Physics,2007,101, 054312. doi: 10.1063/1.2435878
|