WU Fan, GENG Zhi-yong. Formation Control for Nonholonomic Agents Using Passivity Techniques[J]. Applied Mathematics and Mechanics, 2010, 31(1): 26-34. doi: 10.3879/j.issn.1000-0887.2010.01.004
Citation: WU Fan, GENG Zhi-yong. Formation Control for Nonholonomic Agents Using Passivity Techniques[J]. Applied Mathematics and Mechanics, 2010, 31(1): 26-34. doi: 10.3879/j.issn.1000-0887.2010.01.004

Formation Control for Nonholonomic Agents Using Passivity Techniques

doi: 10.3879/j.issn.1000-0887.2010.01.004
  • Received Date: 2009-04-14
  • Rev Recd Date: 2009-11-09
  • Publish Date: 2010-01-15
  • The problem of formation control for multiple nonholonomic agents on a plane was studied. A dynamic feedback linearization method was used to transform each agent's dynamicalmodel in to two third-order in tegrator chains. Then a decentralized formation control law with inter-agent damping in jection was derived. A symptotical stability of the overall system was proved by Liapunov method. Simulation for a planar vehicles. formation maneuver shows the effectiveness of the proposed strategy.
  • loading
  • [1]
    Saber R O, Murray R M. Consensus problems in networks of agents with switching topology and time-delays[J].IEEE Transactions on Automatic Control, 2004,49(9): 1520-1533. doi: 10.1109/TAC.2004.834113
    [2]
    Ren W, Beard R W. Consensus seeking in multiagent systems under dynamically changing interaction topologies[J].IEEE Transactions on Automatic Control, 2005, 50(5): 655-661. doi: 10.1109/TAC.2005.846556
    [3]
    Brockett R W,Millman R S, Sussamann H J.Differential Geometric Control Theory[M]. Cambridge M A:Birkhauser Boston, 1983.
    [4]
    Yamaguchi H. A distributed motion coordination strategy for multiple nonholonomic mobile robots in cooperative hunting operations[J].Robotics and Autonomous Systems, 2003,43(7): 257-282. doi: 10.1016/S0921-8890(03)00037-X
    [5]
    Lawton J, Beard R W,Young B. A decentralized approach to formation maneuvers[J].IEEE Transactions on Automatic Control, 2003,19(2): 933-941.
    [6]
    Balch T, Arkin R C. Behavior-based formation control for multi-robot teams[J].IEEE Transactions on Robotics and Automation, 1998,14(7): 926-939. doi: 10.1109/70.736776
    [7]
    Ren W, Beard R W. Formation feedback control for multiple spacecraft via virtual structures[J].IEE Proceedings Control Theory and Applications, 2004,15(1): 357-368.
    [8]
    Mesbahi M, Hadaegh F Y. Formation flying control of multiple spacecraft via graphs, matrix inequalities, and switching[J].AIAA J of Guidance, Control, and Dynamics, 2001,24(6): 369-377. doi: 10.2514/2.4721
    [9]
    Oriolo G, De Lucay A, Vendittelli M. WMR control via dynamic feedback linearization: design, implementation and experimental validation[J].IEEE Transactions on Control Systems Technology, 2002,10(5): 835-852. doi: 10.1109/TCST.2002.804116
    [10]
    Namerikawa T, Yoshioka C. Consensus control of observer-based multi-agent system with communication delay[J].SICE Annual Conference, 2008,1(1): 2414-2419.
    [11]
    Saber R O, Murray R M. Consensus and cooperation in networked multi-agent systems[J].Proceedings of IEEE, 2007,95(1): 1520-1533.
    [12]
    Lizarralde F, Wen J. Attitude control without angular velocity measurement: a passivity approach[J].IEEE Transactions on Automatic Control, 1996,41(7): 468-472. doi: 10.1109/9.486654
    [13]
    Tsiotras P. Further passivity results for attitude control problem[J].IEEE Transactions on Automatic Control, 1998,43(2): 1597-1600. doi: 10.1109/9.728877
    [14]
    Khalil H K.Nonlinear Systems[M]. Upper Saddle River. NJ: Prentice-Hall, 2002.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1221) PDF downloads(878) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return