ZHANG Shi-sheng, John Michael Rassias, Reza Saadati. Stability of the Cubic Functional Equation in Intuitionistic Random Normed Spaces[J]. Applied Mathematics and Mechanics, 2010, 31(1): 19-25. doi: 10.3879/j.issn.1000-0887.2010.01.003
Citation: ZHANG Shi-sheng, John Michael Rassias, Reza Saadati. Stability of the Cubic Functional Equation in Intuitionistic Random Normed Spaces[J]. Applied Mathematics and Mechanics, 2010, 31(1): 19-25. doi: 10.3879/j.issn.1000-0887.2010.01.003

Stability of the Cubic Functional Equation in Intuitionistic Random Normed Spaces

doi: 10.3879/j.issn.1000-0887.2010.01.003
  • Received Date: 2009-07-06
  • Rev Recd Date: 2009-11-26
  • Publish Date: 2010-01-15
  • The purpose is first to introduce the notation of intuition isticrandom normed spaces, and then by virtue of this notation to study the stability of a cubic functional equation in the setting of these spaces under arbitrary triangle norms. Furthermore, the interdisciplinary relation among the theory of random spaces, the theory of intuitionistic spaces and the theory of functional equations are also presented.
  • loading
  • [1]
    Ulam S M. Problems in Modern Mathematics[M].Chapter VI, Science Editions.New York:Wiley,1964.
    [2]
    Hyers D H. On the stability of the linear functional equation[J].Proc Nat Acad Sci,1941,27(4):222-224. doi: 10.1073/pnas.27.4.222
    [3]
    Aoki T. On the stability of the linear transformation in Banach spaces[J]. J Math Soc Japan,1950,2:64-66. doi: 10.2969/jmsj/00210064
    [4]
    Rassias Th M. On the stability of the linear mapping in Banach spaces[J]. Proc Amer Math Soc,1978,72(2):297-300. doi: 10.1090/S0002-9939-1978-0507327-1
    [5]
    Baak C,Moslehian M S. On the stability of J*-homomorphisms[J]. Nonlinear Anal -TMA,2005 ,63(1):42-48.
    [6]
    Chudziak J,Tabor J. Generalized pexider equation on a restricted domain[J]. J Math Psychology,2008,52(6):389-392. doi: 10.1016/j.jmp.2008.04.002
    [7]
    Czerwik S. Functional Equations and Inequalities in Several Variables[M].River Edge,NJ:World Scientific,2002.
    [8]
    Hyers D H,Isac G,Rassias Th M. Stability of Functional Equations in Several Variables[M]. Basel:Birkhuser,1998.
    [9]
    Jung S M. Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis[M]. Palm Harbor:Hadronic Press,2001.
    [10]
    Rassias Th M. On the stability of functional equations and a problem of Ulam[J].Acta Appl Math ,2000,62(1):23-130. doi: 10.1023/A:1006499223572
    [11]
    Rassias Th M. Functional Equations,Inequalities and Applications[M]. Dordrecht,Boston,London:Kluwer Academic Publishers,2003.
    [12]
    Jun K W,Kim H M. The generalized Hyers-Ulam-Rassias stability of a cubic functional equation[J]. J Math Anal Appl,2002,274(2):867-878. doi: 10.1016/S0022-247X(02)00415-8
    [13]
    Jun K W,Kim H M,Chang I S. On the Hyers-Ulam stability of an Euler-Lagrange type cubic functional equation[J]. J Comput Anal Appl ,2005,7(1):21-33.
    [14]
    Mirmostafaee M,Mirzavaziri M,Moslehian M S. Fuzzy stability of the Jensen functional equation[J]. Fuzzy Sets and Systems,2008,159(6):730-738. doi: 10.1016/j.fss.2007.07.011
    [15]
    Mirzavaziri M,Moslehian M S. A fixed point approach to stability of a quadratic equation[J]. Bull Braz Math Soc,2006,37(3):361-376. doi: 10.1007/s00574-006-0016-z
    [16]
    Alsina C. On the stability of a functional equation arising in probabilistic normed spaces[J]. General Inequalities,1987,5:263-271.
    [17]
    Mihe D,Radu V. On the stability of the additive Cauchy functional equation in random normed spaces[J]. J Math Anal Appl,2008,343(1):567-572. doi: 10.1016/j.jmaa.2008.01.100
    [18]
    Mihe D,Saadati R,Vaezpour S M. The stability of the quadratic functional equation in random normed spaces[J]. Acta Appl Math.DOI: 10.1007/s10440-009-9476-7.
    [19]
    Baktash E,Cho Y J,Jalili M,et al. On the stability of cubic mappings and quadratic mappings in random normed spaces[J]. J Inequal Appl,2008.Article ID 902187.
    [20]
    Chang S S,Cho Y J,Kang S M.Nonlinear Operator Theory in Probabilistic Metric Spaces[M]. New York:Nova Science Publishers,Inc,2001.
    [21]
    Hadic′ O,Pap E. Fixed Point Theory in PM-Spaces[M]. Amsterdam,Holland:Kluwer Academic Publishers,2001.
    [22]
    库图苏 S,图纳 A,雅库特 A T.直觉Menger空间中的广义压缩映射原理及其在微分方程中的应用[J].应用数学和力学,2007,28(6):713- 723.
    [23]
    Schweizer B,Sklar A. Probabilistic Metric Spaces[M].New York:Elsevier,North Holand,1983.
    [24]
    erstnev A N. On the notion of a random normed space[J].Dokl Akad Nauk SSSR,1963,149(2):280-283.
    [25]
    Atanassov K T. Intuitionistic fuzzy sets[J]. Fuzzy Sets and Systems,1986,20(1):87-96. doi: 10.1016/S0165-0114(86)80034-3
    [26]
    Deschrijver G,Kerre E E. On the relationship between some extensions of fuzzy set theory[J]. Fuzzy Sets and Systems,2003,23(2):227-235.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1617) PDF downloads(833) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return