Citation: | WANG Zhi-liang, S. P. Lin, ZHOU Zhe-wei. Spatio-Temporal Instability of Two-Layer Liquid Film at Small Reynolds Numbers[J]. Applied Mathematics and Mechanics, 2010, 31(1): 1-11. doi: 10.3879/j.issn.1000-0887.2010.01.001 |
[1] |
Yih C S. Instability due to viscosity stratification[J]. J Fluid Mech, 1967, 27(2): 337-352. doi: 10.1017/S0022112067000357
|
[2] |
Renardy Y. Instability at the interface between two shearing fluids in a channel[J]. Phys Fluids, 1985, 28(12): 3441-3443. doi: 10.1063/1.865346
|
[3] |
Renardy Y. The thin-layer effect and interfacial stability in a two-layer Couette flow with similar liquids[J]. Phys Fluids, 1987, 30(6): 1627-1637. doi: 10.1063/1.866227
|
[4] |
Chen K P. Interfacial instabilities in stratified shear flows involving multiple viscous and viscoelastic fluids[J]. Appl Mech Rev, 1995, 48(11): 763-776. doi: 10.1115/1.3005092
|
[5] |
Tilley B S, Davis S H, Bankoff S G. Linear stability theory of two-layer fluid flow in an inclined channel[J]. Phys Fluids, 1994, 6(12): 3906-3922. doi: 10.1063/1.868382
|
[6] |
Tilley B S, Davis S H, Bankoff S G. Nonlinear long-wave stability of superposed fluids in an inclined channel[J]. J Fluid Mech,1994, 277: 55-83. doi: 10.1017/S0022112094002685
|
[7] |
Hooper A P. Long-wave instability at the interface between two viscous fluids: thin layer effects[J]. Phys Fluids, 1985, 28(6): 1613-1618. doi: 10.1063/1.864952
|
[8] |
Hooper A P, Boyd W G C. Shear-flow instability at the interface between two viscous fluids[J]. J Fluid Mech, 1983, 128: 507-528. doi: 10.1017/S0022112083000580
|
[9] |
Hooper A P, Grimshaw R. Nonlinear instability at the interface between two viscous fluids[J]. Phys Fluids, 1985, 28(1): 37-45. doi: 10.1063/1.865160
|
[10] |
Kao T W. Role of viscosity stratification in the stability of two-layer flow down an incline[J]. J Fluid Mech, 1968, 33: 561-572. doi: 10.1017/S0022112068001515
|
[11] |
Loewenherz D S, Lawrence C J. The effect of viscosity stratification on the stability of a free surface flow at low Reynolds number[J]. Phys Fluids A, 1989, 1(10): 1686-1693. doi: 10.1063/1.857533
|
[12] |
Chen K P. Wave formation in the gravity-driven low-Reynolds number flow of two liquid films down an inclined plane[J]. Phys Fluids A, 1993, 5(12): 3038-3048.
|
[13] |
Wang C K, Seaborg J J, Lin S P. Instability of multi-layered liquid films[J]. Phys Fluids,1978, 21(10): 1669-1673. doi: 10.1063/1.862106
|
[14] |
Jiang W Y, Helenbrook B, Lin S P. Inertialess instability of a two-layer liquid film flow[J]. Phys Fluids,2004, 16(3): 652-663. doi: 10.1063/1.1642657
|
[15] |
Weinstein S J, Kurz M R. Long-wavelength instabilities in three-layer flow down an incline[J]. Phys Fluids A, 1991, 3(11): 2680-2687. doi: 10.1063/1.858158
|
[16] |
Weinstein S J, Chen K P. Large growth rate instabilities in three-layer flow down an incline in the limit of zero Reynolds number[J]. Phys Fluids, 1999, 11(11): 3270-3282. doi: 10.1063/1.870187
|
[17] |
Kliakhandler I L, Sivashinsky G I. Viscous damping and instabilities in stratified liquid film flowing down a slightly inclined plane[J]. Phys Fluids, 1997, 9(1): 23-30. doi: 10.1063/1.869165
|
[18] |
Pozrikidis C. Gravity-driven creeping flow of two adjacent layers through a channel and down a plane wall[J]. J Fluid Mech,1998, 371: 345-376. doi: 10.1017/S0022112098002213
|
[19] |
Kliakhandler I L. Long interfacial waves in multilayer thin films and coupled Kuramoto-Sivashinsky equations[J]. J Fluid Mech,1999, 391: 45-65. doi: 10.1017/S0022112099005297
|
[20] |
Jiang W Y, Helenbrook B, Lin S P. Low-Reynolds-number instabilities in three-layer flow down an inclined wall[J]. J Fluid Mech,2005, 539: 387-416. doi: 10.1017/S0022112005005781
|
[21] |
Brooke Benjamin T. The development of three-dimensional disturbances in an unstable film of liquid flowing down an inclined plane[J]. J Fluid Mech, 1961, 10(3): 401-419. doi: 10.1017/S0022112061001001
|
[22] |
Yih C S. Stability of two-dimensional parallel flows for three-dimensional disturbances[J]. Quart Appl Math,1955, 12: 434-435.
|
[23] |
Squire H B. On the stability for three-dimensional disturbances of viscous fluid flow between parallel walls[J]. Proc R Soc Lond A,1933, 142(847): 621-628. doi: 10.1098/rspa.1933.0193
|
[1] | ZHAI Guoqing, CHEN Qiaoyu, TONG Dongbing, ZHOU Wuneng. Fixed-Time Asymptotic Stability and Energy Consumption Estimation of Nonlinear Systems[J]. Applied Mathematics and Mechanics, 2023, 44(10): 1180-1186. doi: 10.21656/1000-0887.440041 |
[2] | KONG Wei, LI Jia. Intermittent Turbulence Characteristics in the Stokes Layer for a Transitional Reynolds Number[J]. Applied Mathematics and Mechanics, 2020, 41(10): 1171-1182. doi: 10.21656/1000-0887.400382 |
[3] | HUANG Wei-li, CAI Jian-le. Conformal Invariance for the Nonholonomic System of Chetaev’s Type With Variable Mass[J]. Applied Mathematics and Mechanics, 2012, 33(11): 1294-1303. doi: 10.3879/j.issn.1000-0887.2012.11.005 |
[4] | ZHAO Lu-hai-bo, HU Guo-hui, ZHOU Zhe-wei. Linear Instability of Ultra-Thin Liquid Films Flowing Down a Cylindrical Fibre[J]. Applied Mathematics and Mechanics, 2011, 32(2): 127-134. doi: 10.3879/j.issn.1000-0887.2011.02.001 |
[5] | WANG Zhi-liang, S. P. Lin, ZHOU Zhe-wei. Formation of Radially Expanding Liquid Sheet by Impinging Two Round Jets[J]. Applied Mathematics and Mechanics, 2010, 31(8): 891-900. doi: 10.3879/j.issn.1000-0887.2010.08.001 |
[6] | TANG Qiong, CHEN Chuan-miao, LIU Luo-hua. Space-Time Finite Element Method for the Schrodinger Equation and Its Conservation[J]. Applied Mathematics and Mechanics, 2006, 27(3): 300-304. |
[7] | WANG Yan-xia, HU Guo-hui, ZHOU Zhe-wei. Floquet Stability Analysis of Two-Layer Flows With Periodic Fluctuation in a Vertical Pipe[J]. Applied Mathematics and Mechanics, 2006, 27(8): 883-890. |
[8] | FANG Jian-hui, CHEN Pei-sheng, ZHANG Jun. Form Invariance and Lie Symmetry of Variable Mass Nonholonomic Mechanical System[J]. Applied Mathematics and Mechanics, 2005, 26(2): 187-192. |
[9] | YOU Zhen-jiang, LIN Jian-zhong. Effects of Tensor Closure Models and 3-D Orientation on the Stability of Fiber Suspensions in a Channel Flow[J]. Applied Mathematics and Mechanics, 2005, 26(3): 281-286. |
[10] | LUO Shao-kai. Form Invariance and Noether Symmetrical Conserved Quantity of Relativistic Birkhoffian Systems[J]. Applied Mathematics and Mechanics, 2003, 24(4): 414-422. |
[11] | LIN Jian-zhong, YOU Zhen-jiang. Stability Analysis in Spatial Mode for Channel Flow of Fiber Suspensions[J]. Applied Mathematics and Mechanics, 2003, 24(8): 771-778. |
[12] | CHEN Xiang-wei, LUO Shao-kai, MEI Feng-xiang. A Form Invariance of Constrained Birkhoffian System[J]. Applied Mathematics and Mechanics, 2002, 23(1): 47-51. |
[13] | Qiang Shizhong, Wang Xiaoguo, Tang Maolin, Liu Min. On the Arbitrary Difference Precise Integration Method and Its Numerical Stability[J]. Applied Mathematics and Mechanics, 1999, 20(3): 256-262. |
[14] | Liu Jie. nvariant Manifolds and Their Stability in a Three-Dimensional Measure-preserving Mapping System[J]. Applied Mathematics and Mechanics, 1995, 16(10): 879-888. |
[15] | Tian Hong-jiong, Kuang Jiao-xun. Numerical Stahility Analysis of Numerical Nethods for Volterra integral Equations with Delay Argument[J]. Applied Mathematics and Mechanics, 1995, 16(5): 451-457. |
[16] | Liang Tian-lin, Zhou Ling-yun. Principle of Equal Effects of General Relativity and Invariance of Classical Mechanics Equations[J]. Applied Mathematics and Mechanics, 1993, 14(4): 343-347. |
[17] | Zhou Heng. The Re-examination of the Weakly Nonlinear Theory of Hydrodynamic Stability[J]. Applied Mathematics and Mechanics, 1991, 12(3): 203-208. |
[18] | Wang Fa-min, Ng. Tiak Wan. Asymptotic Analysis of Stability Problem of Plane Poiseuille Flow for High Reynolds Number[J]. Applied Mathematics and Mechanics, 1988, 9(4): 317-326. |
[19] | Xu Ye-yi. First Integral and Stability of Motion in the Critical Cases[J]. Applied Mathematics and Mechanics, 1985, 6(5): 447-454. |
[20] | Wu Wang-yi, Richard Skalak. The Stokes Flow from Half-Space to Semi-Infinite Circular Cylinder[J]. Applied Mathematics and Mechanics, 1985, 6(1): 9-23. |