WANG Zhi-liang, S. P. Lin, ZHOU Zhe-wei. Spatio-Temporal Instability of Two-Layer Liquid Film at Small Reynolds Numbers[J]. Applied Mathematics and Mechanics, 2010, 31(1): 1-11. doi: 10.3879/j.issn.1000-0887.2010.01.001
Citation: WANG Zhi-liang, S. P. Lin, ZHOU Zhe-wei. Spatio-Temporal Instability of Two-Layer Liquid Film at Small Reynolds Numbers[J]. Applied Mathematics and Mechanics, 2010, 31(1): 1-11. doi: 10.3879/j.issn.1000-0887.2010.01.001

Spatio-Temporal Instability of Two-Layer Liquid Film at Small Reynolds Numbers

doi: 10.3879/j.issn.1000-0887.2010.01.001
  • Received Date: 2009-10-20
  • Rev Recd Date: 2009-11-19
  • Publish Date: 2010-01-15
  • The on set of the instability with respect to spatio-temporally growing disturbances in a viscosity-stratified two-layer liquid fiml flow was analyzed. The known results obtained from the temporal theory of instability showed that the flow was un stable in the lmiit of zero Reynolds numbers. The present theory predicted the neutral stability in the same limit. The discrepancy was explained. And based on the mechanical energy equation, a new mechanism of instability was found. The new mechanism was associated with the convective nature of the disturbance which was not Galilei invariant.
  • loading
  • [1]
    Yih C S. Instability due to viscosity stratification[J]. J Fluid Mech, 1967, 27(2): 337-352. doi: 10.1017/S0022112067000357
    [2]
    Renardy Y. Instability at the interface between two shearing fluids in a channel[J]. Phys Fluids, 1985, 28(12): 3441-3443. doi: 10.1063/1.865346
    [3]
    Renardy Y. The thin-layer effect and interfacial stability in a two-layer Couette flow with similar liquids[J]. Phys Fluids, 1987, 30(6): 1627-1637. doi: 10.1063/1.866227
    [4]
    Chen K P. Interfacial instabilities in stratified shear flows involving multiple viscous and viscoelastic fluids[J]. Appl Mech Rev, 1995, 48(11): 763-776. doi: 10.1115/1.3005092
    [5]
    Tilley B S, Davis S H, Bankoff S G. Linear stability theory of two-layer fluid flow in an inclined channel[J]. Phys Fluids, 1994, 6(12): 3906-3922. doi: 10.1063/1.868382
    [6]
    Tilley B S, Davis S H, Bankoff S G. Nonlinear long-wave stability of superposed fluids in an inclined channel[J]. J Fluid Mech,1994, 277: 55-83. doi: 10.1017/S0022112094002685
    [7]
    Hooper A P. Long-wave instability at the interface between two viscous fluids: thin layer effects[J]. Phys Fluids, 1985, 28(6): 1613-1618. doi: 10.1063/1.864952
    [8]
    Hooper A P, Boyd W G C. Shear-flow instability at the interface between two viscous fluids[J]. J Fluid Mech, 1983, 128: 507-528. doi: 10.1017/S0022112083000580
    [9]
    Hooper A P, Grimshaw R. Nonlinear instability at the interface between two viscous fluids[J]. Phys Fluids, 1985, 28(1): 37-45. doi: 10.1063/1.865160
    [10]
    Kao T W. Role of viscosity stratification in the stability of two-layer flow down an incline[J]. J Fluid Mech, 1968, 33: 561-572. doi: 10.1017/S0022112068001515
    [11]
    Loewenherz D S, Lawrence C J. The effect of viscosity stratification on the stability of a free surface flow at low Reynolds number[J]. Phys Fluids A, 1989, 1(10): 1686-1693. doi: 10.1063/1.857533
    [12]
    Chen K P. Wave formation in the gravity-driven low-Reynolds number flow of two liquid films down an inclined plane[J]. Phys Fluids A, 1993, 5(12): 3038-3048.
    [13]
    Wang C K, Seaborg J J, Lin S P. Instability of multi-layered liquid films[J]. Phys Fluids,1978, 21(10): 1669-1673. doi: 10.1063/1.862106
    [14]
    Jiang W Y, Helenbrook B, Lin S P. Inertialess instability of a two-layer liquid film flow[J]. Phys Fluids,2004, 16(3): 652-663. doi: 10.1063/1.1642657
    [15]
    Weinstein S J, Kurz M R. Long-wavelength instabilities in three-layer flow down an incline[J]. Phys Fluids A, 1991, 3(11): 2680-2687. doi: 10.1063/1.858158
    [16]
    Weinstein S J, Chen K P. Large growth rate instabilities in three-layer flow down an incline in the limit of zero Reynolds number[J]. Phys Fluids, 1999, 11(11): 3270-3282. doi: 10.1063/1.870187
    [17]
    Kliakhandler I L, Sivashinsky G I. Viscous damping and instabilities in stratified liquid film flowing down a slightly inclined plane[J]. Phys Fluids, 1997, 9(1): 23-30. doi: 10.1063/1.869165
    [18]
    Pozrikidis C. Gravity-driven creeping flow of two adjacent layers through a channel and down a plane wall[J]. J Fluid Mech,1998, 371: 345-376. doi: 10.1017/S0022112098002213
    [19]
    Kliakhandler I L. Long interfacial waves in multilayer thin films and coupled Kuramoto-Sivashinsky equations[J]. J Fluid Mech,1999, 391: 45-65. doi: 10.1017/S0022112099005297
    [20]
    Jiang W Y, Helenbrook B, Lin S P. Low-Reynolds-number instabilities in three-layer flow down an inclined wall[J]. J Fluid Mech,2005, 539: 387-416. doi: 10.1017/S0022112005005781
    [21]
    Brooke Benjamin T. The development of three-dimensional disturbances in an unstable film of liquid flowing down an inclined plane[J]. J Fluid Mech, 1961, 10(3): 401-419. doi: 10.1017/S0022112061001001
    [22]
    Yih C S. Stability of two-dimensional parallel flows for three-dimensional disturbances[J]. Quart Appl Math,1955, 12: 434-435.
    [23]
    Squire H B. On the stability for three-dimensional disturbances of viscous fluid flow between parallel walls[J]. Proc R Soc Lond A,1933, 142(847): 621-628. doi: 10.1098/rspa.1933.0193
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1444) PDF downloads(874) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return