Citation: | TANG Xu-hai, WU Sheng-chuan, ZHENG Chao, ZHANG Jian-hai. A Novel Virtual Node Method for Polygonal Elements[J]. Applied Mathematics and Mechanics, 2009, 30(10): 1153-1164. doi: 10.3879/j.issn.1000-0887.2009.10.003 |
[1] |
Wachspress E L. A Rational Finite Element Basis[M]. New York: Academic Press, 1975.
|
[2] |
Tabarraei A,Sukumar N. Adaptive computations on conforming quadtree meshes[J]. Finite Elements in Analysis and Design, 2005, 41(7/8): 686-702. doi: 10.1016/j.finel.2004.08.002
|
[3] |
Sukumar N, Malsch E A. Recent advances in the construction of polygonal finite element interpolants[J]. Archives of Computational Methods in Engineering, 2006,13(1): 129-163. doi: 10.1007/BF02905933
|
[4] |
Floater M S. Mean value coordinates[J]. Computer Aided Geometric Design, 2003, 20(1): 19-27. doi: 10.1016/S0167-8396(03)00002-5
|
[5] |
Melenk J M, Babuska I. The partition of unity finite element method: basic theory and applications[J]. Computer Methods in Applied Mechanics and Engineering, 1996, 139(1/4): 289-314. doi: 10.1016/S0045-7825(96)01087-0
|
[6] |
Rajendran S, Zhang B R.A “FE-meshfree”QUAD4 element based on partition of unity[J]. Computer Methods in Applied Mechanics and Engineering, 2007, 197(1/4): 128-147. doi: 10.1016/j.cma.2007.07.010
|
[7] |
Liu G R, Gu Y T. A point interpolation method for two dimensional solid[J]. International Journal for Numerical Methods in Engineering, 2001, 50(4): 937-951. doi: 10.1002/1097-0207(20010210)50:4<937::AID-NME62>3.0.CO;2-X
|
[8] |
Zheng C,Tang X H, Zhang J H, et al. A novel mesh-free poly-cell Galerkin method[J]. Acta Mechanica Sinica, 2009,25(4): 517-527. doi: 10.1007/s10409-009-0239-5
|
[9] |
Zheng C, Wu S C, Tang X H, et al. A meshfree poly-cell Galerkin (MPG) approach for problems of elasticity and fracture[J]. Computer Modelling in Engineering & Sciences, 2008, 38(2): 149-178.
|
[10] |
Strang G, Fix G. An Analysis of the Finite Element Method[M]. Engle-wood Cliffs, New Jersey: Prentice-Hall, 1973.
|
[11] |
Zienkiewicz O C, Taylor R L. The Finite Element Method[M]. 5th Ed. Oxford, UK: Butterworth Heinemann, 2000.
|
[12] |
Mark S Shephard, Marcel K Georges. Automatic three-dimensional mesh generation by the finite octree technique[J]. International Journal for Numerical Methods in Engineering, 1991, 32(4): 709-749. doi: 10.1002/nme.1620320406
|
[13] |
Timoshenko S P, Goodier J N. Theory of Elasticity[M]. 3rd Ed. New York: McGraw, 1970.
|
[14] |
Roark R J, Young W C. Formulas for Stress and Strain[M]. New York: McGraw, 1975.
|
[15] |
Belytschko T, Black T. Elastic crack growth in finite elements with minimal remeshing[J]. International Journal for Numerical Methods in Engineering, 1999, 45(5): 601-620. doi: 10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S
|
[16] |
Moes N, Dolbow J, Belyschko T. A finite element method for crack growth without remeshing[J]. International Journal for Numerical Method in Engineering, 1999, 46 (1): 131-150. doi: 10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
|
[17] |
Aliabadi M H, Rooke D P, Cartwright D J. Mixed-mode Bueckner weight functions using boundary element analysis[J]. International Journal of Fracture, 1987, 34(2): 131-147. doi: 10.1007/BF00019768
|
[18] |
Bouchard P O, Bay F, Chastel Y, et al. Crack propagation modeling using an advanced remeshing technique[J]. Computer Methods in Applied Mechanics and Engineering, 2000, 189(3): 723-742 doi: 10.1016/S0045-7825(99)00324-2
|