ZHANG Shi-sheng. On the Generalized Mixed Equilibrium Problem in Banach Spaces[J]. Applied Mathematics and Mechanics, 2009, 30(9): 1033-1041. doi: 10.3879/j.issn.1000-0887.2009.09.004
Citation: ZHANG Shi-sheng. On the Generalized Mixed Equilibrium Problem in Banach Spaces[J]. Applied Mathematics and Mechanics, 2009, 30(9): 1033-1041. doi: 10.3879/j.issn.1000-0887.2009.09.004

On the Generalized Mixed Equilibrium Problem in Banach Spaces

doi: 10.3879/j.issn.1000-0887.2009.09.004
  • Received Date: 2009-04-04
  • Rev Recd Date: 2009-07-24
  • Publish Date: 2009-09-15
  • The purpose is by using hybrid algorithm to find a common element of the set of solutions for a generalized mixed equilibrium problem,the set of solutions for variational inequality problem and the set of common fixed points for a finite family of quasi-Φ-nonexpansive mappings in a uniformly smooth and strictly convex Banach space.By utilizing the results for the study of optimization problem,it shows that the results improve and extend the corresponding results announced recently by many others such as Ceng,Takahashi,Qin,et al.
  • loading
  • [1]
    CENG Lu-chuan,YAO Jen-chih.A hybrid iterative scheme for mixed equilibrium problems and fixed point problems[J].J Comput Appl Math,2008,214(1):186-201. doi: 10.1016/j.cam.2007.02.022
    [2]
    Browder F E.Existence and approximation of solutions of nonlinear variational inequalities[J].Proc Natl Acad Sci USA,1966,56(4):1080-1086. doi: 10.1073/pnas.56.4.1080
    [3]
    Takahashi W,Zembayashi K.Strong and weak convergence theorems for equilibrium problems and relatively nonexpansive mappings in Banach spaces[J].Nonlinear Anal,2009,70(1):45-57. doi: 10.1016/j.na.2007.11.031
    [4]
    Takahashi S,Takahashi W.Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces[J].J Math Anal Appl,2007,331(1):506-515. doi: 10.1016/j.jmaa.2006.08.036
    [5]
    Qin X L,Shang M,Su Y.A general iterative method for equilibrium problem and fixed point problems in Hilbert spaces[J].Nonlinear Anal,2008,69(11):3897-3909. doi: 10.1016/j.na.2007.10.025
    [6]
    Cioranescu I.Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems[M].Dordrecht:Kluwer,1990.
    [7]
    Alber Y I.Metric and generalized projection operators in Banach spaces: properties and applications[A].In: Kartosator A G,Ed.Theory and Applications of Nonlinear Operators of Accretive and Monotone Type[C].New York:Marcel Dekker,1996,15-50.
    [8]
    Kamimura S,Takahashi W.Strong convergence of a proximal-type algorithm in a Banach space[J].SIAM J Optim,2002,13(3):938-945. doi: 10.1137/S105262340139611X
    [9]
    Matsushita S,Takahashi W.Weak and strong convergence theorems for relatively nonexpansive mappings in Banach spaces[J].Fixed Point Theory Appl,2004,2004(1):37-47.
    [10]
    Nilsrakoo W,Saejung S.Strong convergence to common fixed points of countable relatively quasi-nonexpansive mappings[J].Fixed Point Theory Appl,2008,2008:Article ID 312454,doi: 10.1155/2008/312454.
    [11]
    Blum E,Oettli W.From optimization and variational inequalities to equilibrium problems[J].Math Studient,1994,63(1/4):123-145.
    [12]
    Xu H K.Inequalities in Banach spaces with applications[J].Nonlinear Anal,1991,16(2):1127-1138. doi: 10.1016/0362-546X(91)90200-K
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1731) PDF downloads(1058) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return