FENG Shao-dong, CHEN Li-qun. Homotopy Analysis Approach to the Duffing-Harmonic Oscillator[J]. Applied Mathematics and Mechanics, 2009, 30(9): 1015-1020. doi: 10.3879/j.issn.1000-0887.2009.09.002
Citation: FENG Shao-dong, CHEN Li-qun. Homotopy Analysis Approach to the Duffing-Harmonic Oscillator[J]. Applied Mathematics and Mechanics, 2009, 30(9): 1015-1020. doi: 10.3879/j.issn.1000-0887.2009.09.002

Homotopy Analysis Approach to the Duffing-Harmonic Oscillator

doi: 10.3879/j.issn.1000-0887.2009.09.002
  • Received Date: 2009-01-13
  • Rev Recd Date: 2009-07-20
  • Publish Date: 2009-09-15
  • The homotopy analysis is performed for the Duffing-harmonic oscillator.The auxiliary parameter in the deformation equation was numerically determined.The response and the frequency of the Duffing-harmonic oscillator were calculated.The analytical results are validated by the direct numerical simulations.
  • loading
  • [1]
    Mickens R E.Mathematical and numerical study of the Duffing-harmonic oscillator[J].J Sound Vibration,2001,244(3):563-567. doi: 10.1006/jsvi.2000.3502
    [2]
    Lim C W,Wu B S.A new analytical approach to the Duffing-harmonic oscillator[J].Phys Lett A,2003,311(5):365-377. doi: 10.1016/S0375-9601(03)00513-9
    [3]
    Tiwari S B,Rao B N,Swamy N S,et al.Analytical study on a Duffing-harmonic oscillator[J].J Sound Vibration,2005,285(4):1217-1222. doi: 10.1016/j.jsv.2004.11.001
    [4]
    Hu H,Tang J H.Solution of a Duffing-harmonic oscillator by the method of harmonic balance[J].J Sound Vibration,2006,294(3):637-639. doi: 10.1016/j.jsv.2005.12.025
    [5]
    Lim C W,Wu B S,Sun W P.Higher accuracy analytical approximations to the Duffing-harmonic oscillator[J].J Sound Vibration,2006,296(4):1039-1045. doi: 10.1016/j.jsv.2006.02.020
    [6]
    Hu H.Solutions of the Duffing-harmonic oscillator by an iteration procedure[J].J Sound Vibration,2006,298(1):446-452. doi: 10.1016/j.jsv.2006.05.023
    [7]
    Murdock J A.Perturbations:Theory and Methods[M].New York:Wiley,1991.
    [8]
    Nayfeh A H.Perturbation Methods[M].New York:Wiley,2000.
    [9]
    Liao S J.The proposed homotopy analysis technique for the solution of nonlinear problems[D].PhD thesis.Shanghai:Shanghai Jiao Tong University,1992.
    [10]
    Liao S J.Beyond Perturbation:Introduction to the Homotopy Analysis Method[M].Boca Raton:Chapman & Hall/CRC Press,2003.
    [11]
    Liao S J,Tan Y.A general approach to obtain series solutions of nonlinear differential equations[J].Studies Appl Math,2007,119(4):297-354. doi: 10.1111/j.1467-9590.2007.00387.x
    [12]
    廖世俊.超越摄动:同伦分析方法基本思想及其应用[J].力学进展,2008,38(1):1-34.
    [13]
    Liao S J.An approximate solution technique not depending on small parameters:a special example[J].Int J Non-Linear Mech,1995,30(3):371-380. doi: 10.1016/0020-7462(94)00054-E
    [14]
    Liao S J,Chwang A T.Application of homotopy analysis method in nonlinear oscillations[J].ASME,J Appl Mech,1998,65(4):914-922. doi: 10.1115/1.2791935
    [15]
    Pirbodaghi T,Hoseini S H,Ahmadian M T,et al.Duffing equations with cubic and quintic nonlinearities[J].Comput Math Appl,2009,57(3):500-506. doi: 10.1016/j.camwa.2008.10.082
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1597) PDF downloads(1252) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return