DING Liang, HAN Bo, LIU Jia-qi. Wavelet Multiscale Method for the Inversion of Maxwell’s Equation[J]. Applied Mathematics and Mechanics, 2009, 30(8): 970-978. doi: 10.3879/j.issn.1000-0887.2009.08.010
Citation: DING Liang, HAN Bo, LIU Jia-qi. Wavelet Multiscale Method for the Inversion of Maxwell’s Equation[J]. Applied Mathematics and Mechanics, 2009, 30(8): 970-978. doi: 10.3879/j.issn.1000-0887.2009.08.010

Wavelet Multiscale Method for the Inversion of Maxwell’s Equation

doi: 10.3879/j.issn.1000-0887.2009.08.010
  • Received Date: 2008-12-27
  • Rev Recd Date: 2009-06-29
  • Publish Date: 2009-08-15
  • The estimation of the electrical conductivity in Maxwell's equation is concerned with. The primary difficulty is the presence of numerous local minima in the objective functional. A wavelet multiscale method was introduced and applied to the inversion of Maxwell equations. The inverse problem was then decomposed to multiple scales by wavelet transform and hence the original inverse problem was reformulated to a set of subinverse problems corresponding to different scales solved successively according to the size of scale from the shortest to the longest. On each scale, the stable and fast regularized Gauss-Newton method was carried out. The results of numerical simulation showed that this method is an available method, especially on aspects of wide convergence, computational efficiency and precision.
  • loading
  • [1]
    Alumbaugh D L,Newman G A.3D massively parallel electromagnetic inversion—part B:analysis of a cross well experiment[J].Geophys J Int,1997,128:355-363. doi: 10.1111/j.1365-246X.1997.tb01560.x
    [2]
    Newman G A,Recher S,Tezkan B,et al.3D inversion of a scalar radio magnetotelluric field data set[J].Geophys,2003,68(3):782-790. doi: 10.1190/1.1581031
    [3]
    Ascher U M,Haber E.A multigrid method for distributed parameter estimation problem[J].Electron Trans Numer Anal,2003,15:1-17.
    [4]
    Baboolal S,Bharuthram R.Two-scale numerical solution of the electromagnetic two-fluid plasma-Maxwell equations:shock and soliton simulation[J].Mathematics and Computers in Simulation,2007,76(1/3):3-7. doi: 10.1016/j.matcom.2007.01.004
    [5]
    Haber E.Quasi-Newton methods for large-scale electromagnetic inverse problems[J].Inverse Problems,2005,21(1):305-323. doi: 10.1088/0266-5611/21/1/019
    [6]
    HE Sai-ling,Weston V H.Wave-splitting and absorbing boundary condition for Maxwell's equations on a curved surface[J].Mathematics and Computers in Simulation,1999,50(5/6):435-455. doi: 10.1016/S0378-4754(99)00097-X
    [7]
    Dorn O,Aguirre H B,Berryman J G,et al.A nonlinear inversion method for 3D electromagnetic imaging using adjoint fields[J].Inverse Problems,1999,15(6):1523-1558. doi: 10.1088/0266-5611/15/6/309
    [8]
    Farquharson C G.,Oldenburg D W,Li Y G.An approximate inversion algorithm for time-domain electromagnetic surveys[J].Journal of Applied Geophysics,1999,42(2):71-80. doi: 10.1016/S0926-9851(99)00023-3
    [9]
    Cohen A,Hoffmann M,Reiss M.Adaptive wavelet Galerkin methods for linear inverse problems[J].SIAM J Numer Anal,2004,42(4):1749-1501.
    [10]
    Dicken V,Maass P.Wavelet Galerkin methods for ill-posed problems[J].J Inverse and Ill-Posed Problems,1996,4(3):203-222.
    [11]
    FU Chun-li,ZHU You-bin,QIU Chun-yu.Wavelet regularization for an inverse heat conduction problem[J].J Math Anal Appl,2003,288(1):212-222. doi: 10.1016/j.jmaa.2003.08.003
    [12]
    LIU Jun.A multiresolution method for distributed parameter estimation[J].SIAM J Sci Comput,1993,14(2):389-405. doi: 10.1137/0914024
    [13]
    FU Hong-sun,HAN Bo.A wavelet multiscale method for the inverse problems of a two-dimentional wave equation[J].Inverse Problems in Science and Engineering,2004,12:643-656. doi: 10.1080/10682760410001694203
    [14]
    Bunks C,Saleck F M,Zaleski S,et al.Multiscale seismic waveform inversion[J].Geophysics,1995,60(5):1457-1473. doi: 10.1190/1.1443880
    [15]
    Yee K S.Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media[J].IEEE Transactions on Antennas and Propagation,1996,14(3):302-308.
    [16]
    Farquharson C,Oldenburg D.Non-linear inversion using general measures of data misfit and model structure[J].Geophysics,1998,134(1):213-227.
    [17]
    Huber P J.Robust estimation of a location parameter[J].Ann Math Stats,1964,35(1):73-101. doi: 10.1214/aoms/1177703732
    [18]
    Haber E,Ascher U,Oldenburg D.On optimization techniques for solving non-linear inverse problems[J].Inverse Problems,2000,16(5):1263-1280. doi: 10.1088/0266-5611/16/5/309
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1542) PDF downloads(806) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return