Citation: | HU Wei-peng, DENG Zi-chen, HAN Song-mei, FAN Wei. Multi-Symplectic Runge-Kutta Methods for Landau-Ginzburg-Higgs Equation[J]. Applied Mathematics and Mechanics, 2009, 30(8): 963-969. doi: 10.3879/j.issn.1000-0887.2009.08.009 |
[1] |
Bridges T J.Multi-symplectic structures and wave propagation[J].Math Proc Camb Philos Soc,1997,121(1):147-190. doi: 10.1017/S0305004196001429
|
[2] |
Moore B E,Reich S.Multi-symplectic integration methods for Hamiltonian PDEs[J].Future Generation Computer Systems,2003,19(3):395-402. doi: 10.1016/S0167-739X(02)00166-8
|
[3] |
Bridges T J,Reich S.Multi-symplectic integrators:numerical schemes for Hamiltonian PDEs that conserve symplecticity[J].Phys Lett A,2001,284(4/5):184-193. doi: 10.1016/S0375-9601(01)00294-8
|
[4] |
Reich S.Multi-symplectic Runge-Kutta collocation methods for Hamiltonian wave equations[J].Journal of Computational Physics,2000,157(2):473-499. doi: 10.1006/jcph.1999.6372
|
[5] |
胡伟鹏,邓子辰,李文成.膜自由振动的多辛方法[J].应用数学和力学,2007,28(9):1054-1062.
|
[6] |
胡伟鹏,邓子辰.广义Boussinesq方程的多辛方法[J].应用数学和力学,2008,29(7):839-845.
|
[7] |
Benettin G,Giorgilli A.On the Hamiltonian interpolation of near to the identity symplectic mappings with application to symplectic integration algorithms[J].J Stat Phys,1994,74(5/6):1117-1143. doi: 10.1007/BF02188219
|
[8] |
QIN Meng-zhao,ZHANG Mei-qing.Multi-stage symplectic schemes of two kinds of Hamiltonian systems for wave equations[J].Computers & Mathematics With Applications,1990,19(10):51-62.
|
[9] |
莫嘉琪,王辉,林一骅.广义Landau-Ginzburg-Higgs方程孤子解的扰动理论[J].物理学报,2005,54(12):5581-5584.
|