HU Wei-peng, DENG Zi-chen, HAN Song-mei, FAN Wei. Multi-Symplectic Runge-Kutta Methods for Landau-Ginzburg-Higgs Equation[J]. Applied Mathematics and Mechanics, 2009, 30(8): 963-969. doi: 10.3879/j.issn.1000-0887.2009.08.009
Citation: HU Wei-peng, DENG Zi-chen, HAN Song-mei, FAN Wei. Multi-Symplectic Runge-Kutta Methods for Landau-Ginzburg-Higgs Equation[J]. Applied Mathematics and Mechanics, 2009, 30(8): 963-969. doi: 10.3879/j.issn.1000-0887.2009.08.009

Multi-Symplectic Runge-Kutta Methods for Landau-Ginzburg-Higgs Equation

doi: 10.3879/j.issn.1000-0887.2009.08.009
  • Received Date: 2009-01-12
  • Rev Recd Date: 2009-06-20
  • Publish Date: 2009-08-15
  • The nonlinear wave equation, describing many important physical phenomena, has been investigated widely in last several decades. Landau-Ginzburg-Higgs equation, a typical nonlinear wave equation, was sdudied based on the multisymplectic theory in Hamilton space. The multi symplectic Runge-Kutta method was reviewed and a semiimplicit scheme with certain discrete conservation laws was constructed to solve the first order partial differential equations that were derived from the LandauGinzburg-Higgs equation. The results of numerical experiment for soliton solution of the Landau-Ginzburg-Higgs equation were reported finally, which show that the multi symplectic Runge-Kutta method is an efficient algorithm with excellent long-time numerical behaviors.
  • loading
  • [1]
    Bridges T J.Multi-symplectic structures and wave propagation[J].Math Proc Camb Philos Soc,1997,121(1):147-190. doi: 10.1017/S0305004196001429
    [2]
    Moore B E,Reich S.Multi-symplectic integration methods for Hamiltonian PDEs[J].Future Generation Computer Systems,2003,19(3):395-402. doi: 10.1016/S0167-739X(02)00166-8
    [3]
    Bridges T J,Reich S.Multi-symplectic integrators:numerical schemes for Hamiltonian PDEs that conserve symplecticity[J].Phys Lett A,2001,284(4/5):184-193. doi: 10.1016/S0375-9601(01)00294-8
    [4]
    Reich S.Multi-symplectic Runge-Kutta collocation methods for Hamiltonian wave equations[J].Journal of Computational Physics,2000,157(2):473-499. doi: 10.1006/jcph.1999.6372
    [5]
    胡伟鹏,邓子辰,李文成.膜自由振动的多辛方法[J].应用数学和力学,2007,28(9):1054-1062.
    [6]
    胡伟鹏,邓子辰.广义Boussinesq方程的多辛方法[J].应用数学和力学,2008,29(7):839-845.
    [7]
    Benettin G,Giorgilli A.On the Hamiltonian interpolation of near to the identity symplectic mappings with application to symplectic integration algorithms[J].J Stat Phys,1994,74(5/6):1117-1143. doi: 10.1007/BF02188219
    [8]
    QIN Meng-zhao,ZHANG Mei-qing.Multi-stage symplectic schemes of two kinds of Hamiltonian systems for wave equations[J].Computers & Mathematics With Applications,1990,19(10):51-62.
    [9]
    莫嘉琪,王辉,林一骅.广义Landau-Ginzburg-Higgs方程孤子解的扰动理论[J].物理学报,2005,54(12):5581-5584.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1741) PDF downloads(786) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return