Citation: | BIAN Chunyan, YANG Wencheng, MIAO Fuxing. Thermal Impulse Response Analysis of Element Arrays in Flexible Electronic Devices[J]. Applied Mathematics and Mechanics, 2025, 46(5): 676-686. doi: 10.21656/1000-0887.460035 |
[1] |
李学通, 仝洪月, 赵越, 等. 柔性电子器件的应用、结构、力学及展望[J]. 力学与实践, 2015, 37 (3): 295-301.
LI Xuetong, TONG Hongyue, ZHAO Yue, et al. Structures, mechanical properties and applications of flexible electronic components[J]. Mechanics in Engineering, 2015, 37 (3): 295-301. (in Chinese)
|
[2] |
蔡依晨, 黄维, 董晓臣. 可穿戴式柔性电子应变传感器[J]. 科学通报, 2017, 62 (7): 635-649.
CAI Yichen, HUANG Wei, DONG Xiaochen. Wearable and flexible electronic strain sensor[J]. Chinese Science Bulletin, 2017, 62 (7): 635-649. (in Chinese)
|
[3] |
KHANG D Y, JIANG H, HUANG Y, et al. A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates[J]. Science, 2006, 311 (5758): 208-212. doi: 10.1126/science.1121401
|
[4] |
许巍, 卢天健. 柔性电子系统及其力学性能[J]. 力学进展, 2008, 38 (2): 137-150.
XU Wei, LU Tianjian. Flexible electronics system and their mechanical properties[J]. Advances in Mechanics, 2008, 38 (2): 137-150. (in Chinese)
|
[5] |
KO H C, STOYKOVICH M P, SONG J, et al. A hemispherical electronic eye camera based on compressible silicon optoelectronics[J]. Nature, 2008, 454 (7205): 748-753. doi: 10.1038/nature07113
|
[6] |
LV C F, LI M, XIAO J L, et al. Mechanics of tunable hemispherical electronic eye camera systems that combine rigid device elements with soft elastomers[J]. Journal of Applied Mechanics, 2013, 80 (6): 061022. doi: 10.1115/1.4023962
|
[7] |
TRUNG T Q, LEE N E. Recent progress on stretchable electronic devices with intrinsically stretchable components[J]. Advanced Materials, 2017, 29 (3): 1603167. doi: 10.1002/adma.201603167
|
[8] |
ZHOU J C, GUO X H, XU Z S, et al. Highly sensitive and stretchable strain sensors based on serpentine-shaped composite films for flexible electronic skin applications[J]. Composites Science and Technology, 2020, 197 : 108215. doi: 10.1016/j.compscitech.2020.108215
|
[9] |
KIM H S, BRUECKNER E, SONG J Z, et al. Unusual strategies for using indium gallium nitride grown on silicon (111) for solid-state lighting[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108 (25): 10072-10077.
|
[10] |
DE LIMA JR M M, LACERDA R G, VILCARROMERO J, et al. Coefficient of thermal expansion and elastic modulus of thin films[J]. Journal of Applied Physics, 1999, 86 (9): 4936-4942. doi: 10.1063/1.371463
|
[11] |
GLESKOVA H, CHENG I C, WAGNER S, et al. Thermomechanical criteria for overlay alignment in flexible thin-film electronic circuits[J]. Applied Physics Letters, 2006, 88 (1): 011905. doi: 10.1063/1.2161391
|
[12] |
TORUN H, UREY H. Thermal deflections in multilayer microstructures and athermalization[J]. Journal of Applied Physics, 2006, 100 (2): 023527. doi: 10.1063/1.2216789
|
[13] |
牛利刚, 杨道国, 李功科. 晶圆尺寸级封装器件的热应力及翘曲变形[J]. 电子元件与材料, 2009, 28 (11): 48-51.
NIU Ligang, YANG Daoguo, LI Gongke. Research on the thermal stress and warpage of WLCSP device[J]. Electronic Components and Materials, 2009, 28 (11): 48-51. (in Chinese)
|
[14] |
HUANG Y A, YIN Z P, XIONG Y L. Thermomechanical analysis of film-on-substrate system with temperature-dependent properties[J]. Journal of Applied Mechanics, 2010, 77 (4): 041016.
|
[15] |
ZHANG J P, LI Y H, XING Y F, et al. Three-dimensional thermomechanical analysis of epidermal electronic devices on human skin[J]. International Journal of Solids and Structures, 2019, 167 : 48-57.
|
[16] |
SHI Y Y, XU J Q, LI Y, et al. Theoretical model of thermal stress in the film-substrate system of optical thin film[J]. Journal of Electronic Materials, 2022, 51 (10): 5937-5945.
|
[17] |
GAO J, XU Z P, HAN R Y, et al. Refinement of hyperelastic models based on tension and compression experiments of polydimethylsiloxane (PDMS)[J]. Mechanics of Solids, 2024, 59 (2): 955-965.
|
[18] |
MAZURKIEWICZ D. Problems of numerical simulation of stress and strain in the area of the adhesive-bonded joint of a conveyor belt[J]. Archives of Civil and Mechanical Engineering, 2009, 9 (2): 75-91.
|
[19] |
HUMOOD M, SHI Y, HAN M D, et al. Fabrication and deformation of 3D multilayered kirigami microstructures[J]. Small, 2018, 14 (11): e1703852.
|
[20] |
JOHNSTON I D, MCCLUSKEY D K, TAN C K L, et al. Mechanical characterization of bulk Sylgard 184 for microfluidics and microengineering[J]. Journal of Micromechanics and Microengineering, 2014, 24 (3): 035017.
|
[21] |
吴林志, 殷莎, 马力. 复合材料点阵夹芯结构的耦合换热及热应力分析[J]. 功能材料, 2010, 41 (6): 969-972.
WU Linzhi, YIN Sha, MA Li. Coupled heat transfer and thermal stress analysis of composite lattice core sandwich structure[J]. Journal of Functional Materials, 2010, 41 (6): 969-972. (in Chinese)
|
[22] |
梁艳苹, 苏小卒. 有力筋块体自由摇摆振动恢复系数有限元分析[J]. 土木工程, 2018, 7 (5): 725-733.
LIANG Yanping, SU Xiaochu. FEM analysis of restitution coefficient of free rocking block with tendon[J]. Hans Journal of Civil Engineering, 2018, 7 (5): 725-733. (in Chinese)
|
[23] |
GUVEN I, MADENCI E. Transient heat conduction analysis in a piecewise homogeneous domain by a coupled boundary and finite element method[J]. International Journal for Numerical Methods in Engineering, 2003, 56 (3): 351-380.
|
[24] |
YIN Y F, LI Y H, LI M. Thermal analysis of the flexible electronics affixed on large curvature myocardium surface[J]. International Journal of Heat and Mass Transfer, 2020, 147 : 118983.
|
[25] |
XU K C, LU Y Y, YAMAGUCHI T, et al. Highly precise multifunctional thermal management-based flexible sensing sheets[J]. ACS Nano, 2019, 13 (12): 14348-14356.
|
[26] |
苏梅英, 陆原, 万里兮, 等. 基于三维多芯片柔性封装的热应力分析[J]. 现代电子技术, 2015, 38 (3): 141-143.
SU Meiying, LU Yuan, WAN Lixi, et al. Analysis of thermal stress for 3-D multichip flexible encapsulation[J]. Modern Electronics Technique, 2015, 38 (3): 141-143. (in Chinese)
|
[27] |
TRIPATHY K, BHATTACHARJEE M. Stretching mode deformation analysis for an elastomeric encapsulation-assisted stable flexible electronic substrate[J]. Flexible and Printed Electronics, 2023, 8 (2): 025002.
|
[28] |
YANG Y Q, WINKLER A, KARIMZADEH A. A practical approach for determination of thermal stress and temperature-dependent material properties in multilayered thin films[J]. ACS Applied Materials & Interfaces, 2024, 16 (24): 31729-31737.
|
[29] |
HUANG J, ZHANG Y, FAN A, et al. Remarkable thermal conductivity reduction of silicon nanowires during the bending process[J]. ACS Applied Materials & Interfaces, 2023, 15 (33): 39689-39696.
|
[30] |
CUI Y, LI Y H, XING Y F, et al. One-dimensional thermal analysis of the flexible electronic devices integrated with human skin[J]. Micromachines, 2016, 7 (11): 210.
|