| Citation: | LI Guoqiang, ZHENG Pei, ZHANG Keming. Propagation Characteristics of Rayleigh Waves in Saturated Porous Media Based on the Couple-Stress Elastic Gradient Theory[J]. Applied Mathematics and Mechanics, 2025, 46(10): 1329-1341. doi: 10.21656/1000-0887.450259 |
| [1] |
RAYLEIGH L. On waves propagated along the plane surface of an elastic solid[J]. Proceedings of the London Mathematical Society, 1885, 1(1): 4-11.
|
| [2] |
KIM G, IN C W, KIM J Y, et al. Air-coupled detection of nonlinear Rayleigh surface waves in concrete: application to microcracking detection[J]. NDT & E International, 2014, 67: 64-70.
|
| [3] |
VOIGT W. Theoritical studies on the elasticity relationships of cristals[J]. R Soc Sci, 1887, 34: 3-51.
|
| [4] |
COSSERAT E, COSSERAT F. Theory of Deformable Bodies[M]. Paris: Scientific Library A. Hermann and Sons, 1909.
|
| [5] |
TOUPIN R A. Elastic materials with couple-stresses[J]. Archive for Rational Mechanics and Analysis, 1962, 11(1): 385-414. doi: 10.1007/BF00253945
|
| [6] |
TOUPIN R A. Theory of elasticity with couple-stress[J]. Arch Rat Mech Anal, 1964, 17: 85-11. doi: 10.1007/BF00253050
|
| [7] |
KOITER W T. Couple stresses in the theory of elasticity Ⅰ & Ⅱ[J]. Proceedings of the Koninklijke Nederlandse Akademie Van Wetenschappen, 1964, 67: 17-44.
|
| [8] |
MINDLIN R D, TIERSTEN H F. Effects of couple-stresses in linear elasticity[J]. Archive for Rational Mechanics and Analysis, 1962, 11(1): 415-448. doi: 10.1007/BF00253946
|
| [9] |
YANG F, CHONG A C M, LAM D C C, et al. Couple stress based strain gradient theory for elasticity[J]. International Journal of Solids and Structures, 2002, 39(10): 2731-2743. doi: 10.1016/S0020-7683(02)00152-X
|
| [10] |
ZHENG P, LI G, SUN P, et al. Couple-stress-based gradient theory of poroelasticity[J]. Mathematics and Mechanics of Solids, 2024, 29(1): 173-190. doi: 10.1177/10812865231188930
|
| [11] |
BIOT M A. Theory of propagation of elastic waves in a fluid-saturated porous solid, Ⅰ: low-frequency range[J]. The Journal of the Acoustical Society of America, 1956, 28(2): 168-178. doi: 10.1121/1.1908239
|
| [12] |
BIOT M A. Theory of propagation of elastic waves in a fluid-saturated porous solid, Ⅱ: higher frequency range[J]. The Journal of the Acoustical Society of America, 1956, 28(2): 179-191. doi: 10.1121/1.1908241
|
| [13] |
DING H, TONG L H, XU C, et al. On propagation characteristics of Rayleigh wave in saturated porous media based on the strain gradient nonlocal Biot theory[J]. Computers and Geotechnics, 2022, 141: 104522. doi: 10.1016/j.compgeo.2021.104522
|
| [14] |
HIRAI H. Analysis of Rayleigh waves in saturated porous elastic media by finite element method[J]. Soil Dynamics and Earthquake Engineering, 1992, 11(6): 311-326. doi: 10.1016/0267-7261(92)90014-5
|
| [15] |
LIU H, ZHOU F, WANG L, et al. Propagation of Rayleigh waves in unsaturated porothermoelastic media[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2020, 44(12): 1656-1675. doi: 10.1002/nag.3081
|
| [16] |
TONG L H, LAI S K, ZENG L L, et al. Nonlocal scale effect on Rayleigh wave propagation in porous fluid-saturated materials[J]. International Journal of Mechanical Sciences, 2018, 148: 459-466. doi: 10.1016/j.ijmecsci.2018.08.028
|
| [17] |
SU C, GUAN W, YIN Y, et al. Elastic waves in fluid-saturated porous materials with a couple-stress solid phase[J]. Journal of Sound and Vibration, 2024, 569: 117993. doi: 10.1016/j.jsv.2023.117993
|
| [18] |
MÜNCH I, NEFF P, MADEO A, et al. The modified indeterminate couple stress model: why Yang et al. 's arguments motivating a symmetric couple stress tensor contain a gap and why the couple stress tensor may be chosen symmetric nevertheless[J]. ZAMM-Journal of Applied Mathematics and Mechanics, 2017, 97(12): 1524-1554. doi: 10.1002/zamm.201600107
|
| [19] |
HADJESFANDIARI A R, DARGUSH G F. Couple stress theory for solids[J]. International Journal of Solids and Structures, 2011, 48(18): 2496-2510. doi: 10.1016/j.ijsolstr.2011.05.002
|
| [20] |
HADJESFANDIARI A R. On the skew-symmetric character of the couple-stress tensor[J/OL]. ArXiv: General Physics , 2013[2024-10-25].
|
| [21] |
AKI K, RICHARDS P G. Quantitative Seismology[M]. 2nd ed. University Science Books, 2002.
|
| [22] |
ZHENG P, DING B. Potential method for 3D wave propagation in a poroelastic medium and its applications to Lamb's problem for a poroelastic half-space[J]. International Journal of Geomechanics, 2016, 16(2): 04015048. doi: 10.1061/(ASCE)GM.1943-5622.0000530
|
| [23] |
CHENG A H D. Poroelasticity[M]. Switzerland: Springer International Publishing, 2016.
|
| [24] |
MAVKO G, MUKERJI T, DVORKIN J. The Rock Physics Handbook[M]. 2nd ed. Cambridge: Cambridge University Press, 2009.
|