| Citation: | HAN Fangjian, KU Qixian, YU Haijun, QIU Yi, ZOU Ming, WANG Meng. Numerical Simulation of Single Hole Blasting of Rock Based on the Material Point Method[J]. Applied Mathematics and Mechanics, 2025, 46(10): 1320-1328. doi: 10.21656/1000-0887.450229 |
| [1] |
FENG X T, YAO Z B, LI S J, et al. In situ observation of hard surrounding rock displacement at 2400-m-deep tunnels[J]. Rock Mechanics and Rock Engineering, 2018, 51(3): 873-892. doi: 10.1007/s00603-017-1371-3
|
| [2] |
WAGNER H. Deep mining: a rock engineering challenge[J]. Rock Mechanics and Rock Engineering, 2019, 52(5): 1417-1446. doi: 10.1007/s00603-019-01799-4
|
| [3] |
RANJITH P G, ZHAO J, JU M, et al. Opportunities and challenges in deep mining: a brief review[J]. Engineering, 2017, 3(4): 546-551. doi: 10.1016/J.ENG.2017.04.024
|
| [4] |
CASTRO L, BEWICK R, CARTER T. An overview of numerical modelling applied to deep mining[M]//Innovative Numerical Modelling in Geomechanics. Boca Raton: CRC Press, 2012: 405-426.
|
| [5] |
LI X, ZHU Z, WANG M, et al. Numerical study on the behavior of blasting in deep rock masses[J]. Tunnelling and Underground Space Technology, 2021, 113: 103968. doi: 10.1016/j.tust.2021.103968
|
| [6] |
NEINGO P N, THOLANA T. Trends in productivity in the South African gold mining industry[J]. Journal of the Southern African Institute of Mining and Metallurgy, 2016, 116(3): 283-290.
|
| [7] |
CHEN Q K, ZHU W C. Mechanism of the crack formation induced by pre-split blasting and design method for the pre-split blasting hole space[J]. Journal of Northeastern University (Natural Science), 2011, 32(7): 1024.
|
| [8] |
柳占立, 初东阳, 王涛, 等. 爆炸和冲击载荷下金属材料及结构的动态失效仿真[J]. 应用数学和力学, 2021, 42(1): 1-14. doi: 10.21656/1000-0887.410262
LIU Zhanli, CHU Dongyang, WANG Tao, et al. Dynamic failure simulation of metal materials and structures under blast and impact loading[J]. Applied Mathematics and Mechanics, 2021, 42(1): 1-14. (in Chinese) doi: 10.21656/1000-0887.410262
|
| [9] |
BENDEZU M, ROMANEL C, ROEHL D. Finite element analysis of blast-induced fracture propagation in hard rocks[J]. Computers & Structures, 2017, 182: 1-13.
|
| [10] |
ZHU W C, BAI Y, LI X B, et al. Numerical simulation on rock failure under combined static and dynamic loading during SHPB tests[J]. International Journal of Impact Engineering, 2012, 49: 142-157. doi: 10.1016/j.ijimpeng.2012.04.002
|
| [11] |
XIE L X, LU W B, ZHANG Q B, et al. Damage evolution mechanisms of rock in deep tunnels induced by cut blasting[J]. Tunnelling and Underground Space Technology, 2016, 58: 257-270. doi: 10.1016/j.tust.2016.06.004
|
| [12] |
XIE L X, LU W B, ZHANG Q B, et al. Analysis of damage mechanisms and optimization of cut blasting design under high in situ stresses[J]. Tunnelling and Underground Space Technology, 2017, 66: 19-33. doi: 10.1016/j.tust.2017.03.009
|
| [13] |
BOBET A, FAKHIMI A, JOHNSON S, et al. Numerical models in discontinuous media: review of advances for rock mechanics applications[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(11): 1547-1561. doi: 10.1061/(ASCE)GT.1943-5606.0000133
|
| [14] |
DONZÉ F V, BOUCHEZ J, MAGNIER S A. Modeling fractures in rock blasting[J]. International Journal of Rock Mechanics and Mining Sciences, 1997, 34(8): 1153-1163. doi: 10.1016/S1365-1609(97)80068-8
|
| [15] |
DE VAUCORBEIL A, NGUYEN V P, SINAIE S, et al. Material point method after 25 years: theory, implementation, and applications[J]. Advances in Applied Mechanics, 2020, 53: 185-398.
|
| [16] |
BANADAKI M D, MOHANTY B. Numerical simulation of stress wave induced fractures in rock[J]. International Journal of Impact Engineering, 2012, 40: 16-25.
|
| [17] |
LEE J S, HSU C K, CHANG C L. A study on the thermal decomposition behaviors of PETN, RDX, HNS and HMX[J]. Thermochimica Acta, 2002, 392: 173-176.
|
| [18] |
HEUZÉ O. General form of the Mie-Grüneisen equation of state[J]. Comptes Rendus Mécanique, 2012, 340(10): 679-687.
|
| [19] |
LEMONS D S, LUND C M. Thermodynamics of high temperature, Mie-Gruneisen solids[J]. American Journal of Physics, 1999, 67(12): 1105-1108. doi: 10.1119/1.19091
|
| [20] |
WANG Y, ZENG X, CHEN H, et al. Modified Johnson-Cook constitutive model of metallic materials under a wide range of temperatures and strain rates[J]. Results in Physics, 2021, 27: 104498. doi: 10.1016/j.rinp.2021.104498
|