| Citation: | KANG Chengjun, MIAO Hui. A Discrete-Time Delayed Car-Following Model Considering the Average Velocity of Multiple Autonomous Vehicles and Self-Delayed Feedback[J]. Applied Mathematics and Mechanics, 2025, 46(10): 1342-1353. doi: 10.21656/1000-0887.450223 |
| [1] |
BANDO M, HASEBE K, NAKAYAMA A, et al. Dynamical model of traffic congestion and numerical simulation[J]. Physical Review E: Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1995, 51(2): 1035-1042.
|
| [2] |
HELBING D, TILCH B. Generalized force model of traffic dynamics[J]. Physical Review E, 1998, 58(1): 133-138. doi: 10.1103/PhysRevE.58.133
|
| [3] |
JIANG R, WU Q, ZHU Z. Full velocity difference model for a car-following theory[J]. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 2001, 64: 017101. doi: 10.1103/PhysRevE.64.017101
|
| [4] |
TANG T, WANG Y, YANG X, et al. A new car-following model accounting for varying road condition[J]. Nonlinear Dynamics, 2012, 70(2): 1397-1405. doi: 10.1007/s11071-012-0542-8
|
| [5] |
WEN H, RONG Y, ZENG C, et al. The effect of driver's characteristics on the stability of traffic flow under honk environment[J]. Nonlinear Dynamics, 2016, 84(3): 1517-1528. doi: 10.1007/s11071-015-2585-0
|
| [6] |
LI S, YANG L, GAO Z, et al. Stabilization strategies of a general nonlinear car-following model with varying reaction-time delay of the drivers[J]. ISA Transactions, 2014, 53(6): 1739-1745. doi: 10.1016/j.isatra.2014.08.017
|
| [7] |
GE H X, DAI S Q, DONG L Y, et al. Stabilization effect of traffic flow in an extended car-following model based on an intelligent transportation system application[J]. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 2004, 70: 066134. doi: 10.1103/PhysRevE.70.066134
|
| [8] |
KUANG H, XU Z P, LI X L, et al. An extended car-following model accounting for the average headway effect in intelligent transportation system[J]. Physica A: Statistical Mechanics and Its Applications, 2017, 471: 778-787. doi: 10.1016/j.physa.2016.12.022
|
| [9] |
ZHU W X, ZHANG L D. A new car-following model for autonomous vehicles flow with mean expected velocity field[J]. Physica A: Statistical Mechanics and Its Applications, 2018, 492: 2154-2165. doi: 10.1016/j.physa.2017.11.133
|
| [10] |
MA M, MA G, LIANG S. Density waves in car-following model for autonomous vehicles with backward looking effect[J]. Applied Mathematical Modelling, 2021, 94: 1-12. doi: 10.1016/j.apm.2021.01.002
|
| [11] |
YU B, ZHOU H, WANG L, et al. An extended two-lane car-following model considering the influence of heterogeneous speed information on drivers with different characteristics under honk environment[J]. Physica A: Statistical Mechanics and Its Applications, 2021, 578: 126022. doi: 10.1016/j.physa.2021.126022
|
| [12] |
陈龙, 刘孟协, 蔡英风, 等. 车路协同环境下考虑坡度与前车信息的跟驰模型[J]. 东南大学学报(自然科学版), 2022, 52(4): 787-795.
CHEN Long, LIU Mengxie, CAI Yingfeng et al. A following model considering slope and information of the vehicle ahead under vehicle-road coordination environment[J]. Journal of Southeast University(Natural Science Edition), 2022, 52(4): 787-795. (in Chinese)
|
| [13] |
PENG G H, JIA T T, KUANG H, et al. A novel car-following model by sharing cooperative information transmission delayed effect under V2X environment and its additional energy consumption[J]. Chinese Physics B, 2022, 31(5): 058901. doi: 10.1088/1674-1056/ac422a
|
| [14] |
PENG G, JIA T, ZHAO H, et al. Integrating the historical evolution information integral effect in car-following model under the V2X environment[J]. Physica A: Statistical Mechanics and Its Applications, 2023, 627: 129125. doi: 10.1016/j.physa.2023.129125
|
| [15] |
PENG G, WANG K, ZHAO H, et al. Integrating cyber-attacks on the continuousdelay effect in coupled map car-following model under connected vehicles environment[J]. Nonlinear Dynamics, 2023, 111(14): 13089-13110. doi: 10.1007/s11071-023-08508-5
|
| [16] |
尹砚铎, 龙科军, 谷健. 考虑驾驶员记忆的多前车速度差跟驰模型研究[J]. 交通科学与工程, 2024, 40(2): 127-137.
YIN Yanduo, LONG Kejun, GU Jian. A multi-vehicle speed difference car-following model considering driver memory[J]. Journal of Transport Science and Engineering, 2024, 40(2): 127-137. (in Chinese)
|
| [17] |
房雅灵, 史忠科. 离散交通流模型的反馈线性化与拥堵控制[J]. 应用数学和力学, 2015, 36(5): 474-481. doi: 10.3879/j.issn.1000-0887.2015.05.003
FANG Yaling, SHI Zhongke. Feedback linearization and congestion control for a discrete traffic flow model[J]. Applied Mathematics and Mechanics, 2015, 36 (5): 474-481. (in Chinese) doi: 10.3879/j.issn.1000-0887.2015.05.003
|
| [18] |
ZHU W X, ZHANGL D. Discrete car-following model and its feedback control scheme[J]. Asian Journal of Control, 2020, 22(1): 182-191. doi: 10.1002/asjc.1867
|
| [19] |
CUI B Y, ZHANG G, MA Q L. A stable velocity control strategy for a discrete-time car-following model[J]. Physica A: Statistical Mechanics and Its Applications, 2021, 571: 125846. doi: 10.1016/j.physa.2021.125846
|
| [20] |
KANG C, QIAN Y, ZENG J, et al. Analysis of stability, energy consumption and CO2 emissions in novel discrete-time car-following model with time delay under V2V environment[J]. Physica A: Statistical Mechanics and Its Applications, 2024, 634: 129480. doi: 10.1016/j.physa.2023.129480
|
| [21] |
BOYD S, EL GHAOUI L, FERON E, et al. Linear Matrix Inequalities in System and Control Theory[M]. Philadelphia: Society for Industrial and Applied Mathematics, 1994.
|