Citation: | ZHAN Chunxiao, LI Xiaobao, WANG Meiqin. Static Buckling Behaviors of Piezoelectric Semiconductor Beams With Steigmann-Ogden Surface Effects[J]. Applied Mathematics and Mechanics, 2024, 45(10): 1300-1312. doi: 10.21656/1000-0887.450200 |
WANG Z L, WU W, FALCONI C, et al. Piezotronics and piezo-phototronics with third-generation semiconductors[J]. MRS Bulletin,2018,43(12): 922-927.
|
[2]WANG Z L. Progress in piezotronics and piezo-phototronics[J]. Advanced Materials,2012,24(34): 4632-4646.
|
[3]ZHANG G, SHEN S. Analysis of electromechanical couplings and nonlinear carrier transport in flexoelectric semiconductors[J]. Journal of Physics D: Applied Physics,2023,56(32): 325102.
|
[4]WANG G, LIU J, LIU X, et al. Extensional vibration characteristics and screening of polarization charges in a ZnO piezoelectric semiconductor nanofiber[J]. Journal of Applied Physics,2018,124(9): 094502.
|
[5]SUN L, ZHANG Z, GAO C, et al. Effect of flexoelectricity on piezotronic responses of a piezoelectric semiconductor bilayer[J]. Journal of Applied Physics,2021,129(24): 244102.
|
[6]LIANG C, ZHANG C, CHEN W, et al. Static buckling of piezoelectric semiconductor fibers[J]. Materials Research Express,2020,6(12): 125919.
|
[7]DAI X, ZHU F, QIAN Z, et al. Electric potential and carrier distribution in a piezoelectric semiconductor nanowire in time-harmonic bending vibration[J]. Nano Energy,2018,43: 22-28.
|
[8]HE J H, HSIN C L, LIU J, et al. Piezoelectric gated diode of a single ZnO nanowire[J]. Advanced Materials,2007,19(6): 781-784.
|
[9]WANG X, ZHOU J, SONG J, et al. Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire[J]. Nano Letters,2006,6(12): 2768-2772.
|
[10]FEI P, YEH P H, ZHOU J, et al. Piezoelectric potential gated field-effect transistor based on a free-standing ZnO wire[J]. Nano Letters,2009,9(10): 3435-3439.
|
[11]ZHOU J, GU Y, FEI P, et al. Flexible piezotronic strain sensor[J]. Nano Letters,2008,8(9): 3035-3040.
|
[12]ZHANG J, ZHOU J. Humidity-dependent piezopotential properties of zinc oxide nanowires: insights from atomic-scale modelling[J]. Nano Energy,2018,50: 298-307.
|
[13]LAO C S, KUANG Q, WANG Z L, et al. Polymer functionalized piezoelectric-FET as humidity/chemical nanosensors[J]. Applied Physics Letters,2007,90(26): 262107.
|
[14]WANG Z L, SONG J. Piezoelectric nanogenerators based on zinc oxide nanowire arrays[J]. Science,2006,312(5771): 242-246.
|
[15]SONG J, ZHOU J, WANG Z L. Piezoelectric and semiconducting coupled power generating process of a single ZnO belt/wire. A technology for harvesting electricity from the environment[J]. Nano Letters,2006,6(8): 1656-1662.
|
[16]GAO Y, WANG Z L. Electrostatic potential in a bent piezoelectric nanowire. the fundamental theory of nanogenerator and nanopiezotronics[J]. Nano Letters,2007,7(8): 2499-2505.
|
[17]〖JP2〗DENG Q, KAMMOUN M, ERTURK A, et al. Nanoscale flexoelectric energy harvesting[J]. International Journal of Solids and Structures,2014,51(18): 3218-3225.
|
[18]MOURA A G, ERTURK A. Electroelastodynamics of flexoelectric energy conversion and harvesting in elastic dielectrics[J]. Journal of Applied Physics,2017,121(6): 064110.
|
[19]QU Y, JIN F, YANG J. Buckling of flexoelectric semiconductor beams[J]. Acta Mechanica,2021,232(7): 2623-2633.
|
[20]LEE D, NOH T W. Giant flexoelectric effect through interfacial strain relaxation[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences,2012,370(1977): 4944-4957.
|
[21]LEE D. Flexoelectricity in thin films and membranes of complex oxides[J]. APL Materials,2020,8(9): 090901.
|
[22]MAJDOUB M S, SHARMA P, CAGIN T. Enhanced size-dependent piezoelectricity and elasticity in nanostructures due to the flexoelectric effect[J]. Physical Review B,2008,77(12): 125424.
|
[23]MAJDOUB M S, SHARMA P, AGIN T. Dramatic enhancement in energy harvesting for a narrow range of dimensions in piezoelectric nanostructures[J]. Physical Review B,2008,78(12): 121407.
|
[24]ZHOU Z D, YANG C P, SU Y X, et al. Electromechanical coupling in piezoelectric nanobeams due to the flexoelectric effect[J]. Smart Materials and Structures,2017,26(9): 095025.
|
[25]ZHANG Z, JIANG L. Size effects on electromechanical coupling fields of a bending piezoelectric nanoplate due to surface effects and flexoelectricity[J]. Journal of Applied Physics,2014,116(13): 134308.
|
[26]鲁双, 李东波, 陈晶博, 等. 考虑挠曲电与温度效应的Mindlin-Medick板理论及其应用[J].应用数学和力学, 2023,44(9): 1122-1133. (LU Shuang, LI Dongbo, CHEN Jingbo, et al. The Mindlin-Medick plate theory and its application under flexoelectricity and temperature effects[J].Applied Mathematics and Mechanics,2023,44(9): 1122-1133. (in Chinese))
|
[27]ZHAO M, LIU X, FAN C, et al. Theoretical analysis on the extension of a piezoelectric semi-conductor nanowire: effects of flexoelectricity and strain gradient[J]. Journal of Applied Physics,2020,127(8): 085707.
|
[28]ZHAO M, NIU J, LU C, et al. Effects of flexoelectricity and strain gradient on bending vibration characteristics of piezoelectric semiconductor nanowires[J]. Journal of Applied Physics,2021,129(16): 164301.
|
[29]FANG K, LI P, QIAN Z. Static and dynamic analysis of a piezoelectric semiconductor cantilever under consideration of flexoelectricity and strain gradient elasticity[J]. Acta Mechanica Solida Sinica,2021,34(5): 673-686.
|
[30]WANG K F, WANG B L. Electrostatic potential in a bent piezoelectric nanowire with consideration of size-dependent piezoelectricity and semiconducting characterization[J]. Nanotechnology,2018,29(25): 255405.
|
[31]QU Y, JIN F, YANG J. Effects of mechanical fields on mobile charges in a composite beam of flexoelectric dielectrics and semiconductors[J]. Journal of Applied Physics,2020,127(19): 194502.
|
[32]GURTIN M E, MURDOCH A I. A continuum theory of elastic material surfaces[J].Archive for Rational Mechanics and Analysis,1975,57(4): 291-323.
|
[33]GURTIN M E, MURDOCH A I. Surface stress in solids[J]. International Journal of Solids and Structures,1978,14(6): 431-440.
|
[34]STEIGMANN D J, OGDEN R W. Plane deformations of elastic solids with intrinsic boundary elasticity[J]. Proceedings of the Royal Society of London (Series A): Mathematical, Physical and Engineering Sciences,1997,453(1959): 853-877.
|
[35]CHHAPADIA P, MOHAMMADI P, SHARMA P. Curvature-dependent surface energy and implications for nanostructures[J]. Journal of the Mechanics and Physics of Solids,2011,59(10): 2103-2115.
|
[36]MOHAMMADI P, SHARMA P. Atomistic elucidation of the effect of surface roughness on curvature-dependent surface energy, surface stress, and elasticity[J]. Applied Physics Letters,2012,100(13): 133110-133113.
|
[37]LIANG X, HU S, SHEN S. Effects of surface and flexoelectricity on a piezoelectric nanobeam[J]. Smart Materials and Structures,2014,23(3): 035020.
|
[38]周强, 张志纯, 龙志林, 等. 考虑表面效应的压电纳米梁的振动研究[J].应用数学和力学, 2020,41(8): 853-865. (ZHOU Qiang, ZHANG Zhichun, LONG Zhilin, et al. Vibration of piezoelectric nanobeams with surface effects[J].Applied Mathematics and Mechanics,2020,41(8): 853-865. (in Chinese))
|
[39]WANG G F, FENG X Q. Effects of surface stresses on contact problems at nanoscale[J]. Journal of Applied Physics,2007,101(1): 013510.
|
[40]赵婕燕, 杨海兵. 表面效应对热电材料中纳米孔周围热应力的影响[J].应用数学和力学, 2023,44(11): 1311-1324. (ZHAO Jieyan, YANG Haibing. Surface effects on thermal stresses around the nanohole in thermoelectric material[J].Applied Mathematics and Mechanics,2023,44(11): 1311-1324. (in Chinese))
|
[41]冯国益, 肖俊华, 苏梦雨. 考虑表面效应时孔边均布径向多裂纹Ⅲ型断裂力学分析[J].应用数学和力学, 2020,41(4): 376-385. (FENG Guoyi, XIAO Junhua, SU Mengyu. Fracture mechanics analysis of mode-Ⅲ radial multi cracks on the edge of a hole with surface effects[J].Applied Mathematics and Mechanics,2020,41(4): 376-385. (in Chinese))
|
[42]YAO Y, CHEN S. Buckling behavior of nanowires predicted by a new surface energy density model[J]. Acta Mechanica,2016,227(7): 1799-1811.
|
[43]WANG G F, FENG X Q. Timoshenko beam model for buckling and vibration of nanowires with surface effects[J]. Journal of Physics D: Applied Physics,2009,42(15): 155411.
|
[44]ANSARI R, SAHMANI S. Bending behavior and buckling of nanobeams including surface stress effects corresponding to different beam theories[J]. International Journal of Engineering Science,2011,49(11): 1244-1255.
|
[45]CHALLAMEL N, ELISHAKOFF I. Surface stress effects may induce softening: Euler-Bernoulli and Timoshenko buckling solutions[J].Physica E: Low-Dimensional Systems and Nanostructures,2012,44(9): 1862-1867.
|
[46]LIANG X, HU S, SHEN S. Size-dependent buckling and vibration behaviors of piezoelectric nanostructures due to flexoelectricity[J]. Smart Materials and Structures,2015,24(10): 105012.
|
[47]ALIBEIGI B, BENI Y T, MEHRALIAN F. On the thermal buckling of magneto-electro-elastic piezoelectric nanobeams[J]. The European Physical Journal Plus,2018,133(3): 133.
|
[48]SAMANI M S E, BENI Y T. Size dependent thermo-mechanical buckling of the flexoelectric nanobeam[J]. Materials Research Express,2018,5(8): 085018.
|
[49]JI L W, YOUNG S J, FANG T H, et al. Buckling characterization of vertical ZnO nanowires using nanoindentation[J]. Applied Physics Letters,2007,90(3): 033109.
|
[50]RIAZ M, FULATI A, AMIN G, et al. Buckling and elastic stability of vertical ZnO nanotubes and nanorods[J]. Journal of Applied Physics,2009,106(3): 034309.
|
[51]ZHANG J, WANG C, ADHIKARI S. Fracture and buckling of piezoelectric nanowires subject to an electric field[J]. Journal of Applied Physics,2013,114(17): 174306.
|
[52]WANG G F, FENG X Q. Effect of surface stresses on the vibration and buckling of piezoelectric nanowires[J]. Europhysics Letters,2010,91(5): 56007.
|
[53]ZHANG Z, LIANG C, KONG D, et al. Dynamic buckling and free bending vibration of axially compressed piezoelectric semiconductor rod with surface effect[J]. International Journal of Mechanical Sciences,2023,238: 107823.
|
[54]WANG Z, HU Q, ZHAO J, et al. Failure mode transformation of ZnO nanowires under uniaxial compression: from phase transition to buckling[J]. Nanotechnology,2019,30(37): 375702.
|
[55]FAN S, LIANG Y, XIE J, et al. Exact solutions to the electromechanical quantities inside a statically-bent circular ZnO nanowire by taking into account both the piezoelectric property and the semiconducting performance, part Ⅰ: linearized analysis[J]. Nano Energy,2017,40: 82-87.
|
[56]TIMOSHENKO S. Theory of Elastic Stability[M].2nd ed. New York: McGraw-Hill, 1961.
|