Volume 46 Issue 3
Mar.  2025
Turn off MathJax
Article Contents
WANG Yahui, GUO Cheng, DU Yulong. A 3rd-Order WENO Scheme for Stencil Smoothness Indicators Based on Mapping[J]. Applied Mathematics and Mechanics, 2025, 46(3): 394-411. doi: 10.21656/1000-0887.450150
Citation: WANG Yahui, GUO Cheng, DU Yulong. A 3rd-Order WENO Scheme for Stencil Smoothness Indicators Based on Mapping[J]. Applied Mathematics and Mechanics, 2025, 46(3): 394-411. doi: 10.21656/1000-0887.450150

A 3rd-Order WENO Scheme for Stencil Smoothness Indicators Based on Mapping

doi: 10.21656/1000-0887.450150
  • Received Date: 2024-05-21
  • Rev Recd Date: 2024-07-06
  • Publish Date: 2025-03-01
  • The key to whether the WENO scheme can achieve optimal convergence accuracy and maintain essential no-oscillation characteristics near discontinuities lies in the construction of smoothness indicators. The smoothness indicator of the 3rd-order WENO scheme was modified through the construction of a mapping function to correct the smoothness indicators on each candidate stencil with the smoothest indicator. Under the influence of this mapping function, the smoothness indicator of the under-smooth stencil was reduced, thereby the nonlinear weight of the under-smooth stencil was increased. Then the numerical dissipation of the scheme was significantly lowered and its resolution was improved. A series of numerical examples demonstrate that, the new 3rd-order WENO scheme for smoothness indicators based on mapping has higher resolution than the classical WENO-JS3 and WENO-Z3 schemes.
  • loading
  • [1]
    LIU X D, OSHER S, CHAN T. Weighted essentially non-oscillatory schemes[J]. Journal of Computational Physics, 1994, 115(1): 200-212. doi: 10.1006/jcph.1994.1187
    [2]
    HARTEN A, ENGQUIST B, OSHER S, et al. Uniformly high order accurate essentially non-oscillatory schemes, Ⅲ[J]. Journal of Computational Physics, 1987, 71(2): 231-303. doi: 10.1016/0021-9991(87)90031-3
    [3]
    JIANG G S, SHU C W. Efficient implementation of weighted ENO schemes[J]. Journal of Computational Physics, 1996, 126(1): 202-228. doi: 10.1006/jcph.1996.0130
    [4]
    SHU C W, OSHER S. Efficient implementation of essentially non-oscillatory shock-capturing schemes, Ⅱ[J]. Journal of Computational Physics, 1989, 83(1): 32-78. doi: 10.1016/0021-9991(89)90222-2
    [5]
    HENRICK A K, ASLAM T D, POWERS J M. Mapped weighted essentially non-oscillatory schemes: achieving optimal order near critical points[J]. Journal of Computational Physics, 2005, 207(2): 542-567. doi: 10.1016/j.jcp.2005.01.023
    [6]
    BORGES R, CARMONA M, COSTA B, et al. An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws[J]. Journal of Computational Physics, 2008, 227(6): 3191-3211. doi: 10.1016/j.jcp.2007.11.038
    [7]
    HA Y, KIM C H, LEE Y J, et al. An improved weighted essentially non-oscillatory scheme with a new smoothness indicator[J]. Journal of Computational Physics, 2013, 232(1): 68-86. doi: 10.1016/j.jcp.2012.06.016
    [8]
    FAN P, SHEN Y Q, TIAN B L, et al. A new smoothness indicator for improving the weighted essentially non-oscillatory scheme[J]. Journal of Computational Physics, 2014, 269: 329-354.
    [9]
    YAN Z G, LIU H Y, MAO M L, et al. New nonlinear weights for improving accuracy and resolution of weighted compact nonlinear scheme[J]. Computers & Fluids, 2016, 127: 226-240.
    [10]
    KIM C H, HA Y S, YOON J H. Modified non-linear weights for fifth-order weighted essentially non-oscillatory schemes[J]. Journal of Scientific Computing, 2016, 67(1): 299-323. doi: 10.1007/s10915-015-0079-3
    [11]
    CASTRO M, COSTA B, DON W S. High order weighted essentiallynon-oscillatory WENO-Z schemes for hyperbolic conservation laws[J]. Journal of Computational Physics, 2011, 230(5): 1766-1792. doi: 10.1016/j.jcp.2010.11.028
    [12]
    ARÀNDIGA F, BAEZA A, BELDA A M, et al. Analysis of WENO schemes for full and global accuracy[J]. SIAM Journal on Numerical Analysis, 2011, 49(2): 893-915. doi: 10.1137/100791579
    [13]
    王亚辉. 求解双曲守恒律方程的三阶修正模板WENO格式[J]. 应用数学和力学, 2022, 43(2): 224-236. doi: 10.21656/1000-0887.420091

    WANG Yahui. A 3rd-order modified stencil WENO scheme for solution of hyperbolic conservation law equations[J]. Applied Mathematics and Mechanics, 2022, 43(2): 224-236. (in Chinese) doi: 10.21656/1000-0887.420091
    [14]
    WANG Y H, DU Y L, ZHAO K L, et al. Modified stencil approximations for fifth-order weighted essentially non-oscillatory schemes[J]. Journal of Scientific Computing, 2019, 81(2): 898-922. doi: 10.1007/s10915-019-01042-w
    [15]
    WANG Y H, DU Y L, ZHAO K L, et al. A new 6th-order WENO scheme with modified stencils[J]. Computers & Fluids, 2020, 208: 104625.
    [16]
    WANG Y H. Improved weighted essentially non-oscillatory schemes with modified stencil approximation[J]. Computational and Applied Mathematics, 2023, 42(2): 82. doi: 10.1007/s40314-022-02075-y
    [17]
    ZENG F J, SHEN Y Q, LIU S P. A perturbational weighted essentially non-oscillatory scheme[J]. Computers & Fluids, 2018, 172: 196-208.
    [18]
    WU X, ZHAO Y. A high-resolution hybrid scheme for hyperbolic conservation laws[J]. International Journal for Numerical Methods in Fluids, 2015, 78(3): 162-187. doi: 10.1002/fld.4014
    [19]
    WU X, LIANG J, ZHAO Y. A new smoothness indicator for third-order WENO scheme[J]. International Journal for Numerical Methods in Fluids, 2016, 81(7): 451-459. doi: 10.1002/fld.4194
    [20]
    XU W, WU W. An improved third-order WENO-Z scheme[J]. Journal of Scientific Computing, 2018, 75(3): 1808-1841. doi: 10.1007/s10915-017-0587-4
    [21]
    WANG Y H, DU Y L, ZHAO K L, et al. A low-dissipation third-order weighted essentially nonoscillatory scheme with a new reference smoothness indicator[J]. International Journal for Numerical Methods in Fluids, 2020, 92(9): 1212-1234. doi: 10.1002/fld.4824
    [22]
    王亚辉. 基于新的参考光滑性指示子的改进的三阶WENO格式[J]. 应用数学和力学, 2022, 43(7): 802-815. doi: 10.21656/1000-0887.420194

    WANG Yahui. An improved 3rd-order WENO scheme based on a new reference smoothness indicator[J]. Applied Mathematics and Mechanics, 2022, 43(7): 802-815. (in Chinese) doi: 10.21656/1000-0887.420194
    [23]
    徐维铮, 吴卫国. 三阶WENO-Z格式精度分析及其改进格式[J]. 应用数学和力学, 2018, 39(8): 946-960. doi: 10.21656/1000-0887.390011

    XU Weizheng, WU Weiguo. Precision analysis of the 3rd-order WENO-Z scheme and its improved scheme[J]. Applied Mathematics and Mechanics, 2018, 39(8): 946-960. (in Chinese) doi: 10.21656/1000-0887.390011
    [24]
    LAX P D. Weak solutions of nonlinear hyperbolic equations and their numerical computation[J]. Communications on Pure and Applied Mathematics, 1954, 7(1): 159-193. doi: 10.1002/cpa.3160070112
    [25]
    SOD G A. A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws[J]. Journal of Computational Physics, 1978, 27(1): 1-31. doi: 10.1016/0021-9991(78)90023-2
    [26]
    WANG Y H, GUO C. Improved third-order WENO scheme with a new reference smoothness indicator[J]. Applied Numerical Mathematics, 2023, 192: 454-472. doi: 10.1016/j.apnum.2023.07.006
    [27]
    WOODWARD P, COLELLA P. The numerical simulation of two-dimensional fluid flow with strong shocks[J]. Journal of Computational Physics, 1984, 54(1): 115-173. doi: 10.1016/0021-9991(84)90142-6
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(5)

    Article Metrics

    Article views (84) PDF downloads(20) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return