Citation: | YANG Jiayue, ZHAO Ying. Morphology Control and Suppression of Lithium Dendrite Growth in Solid-State Electrolytes Based on Phase-Field Simulation[J]. Applied Mathematics and Mechanics, 2025, 46(3): 324-339. doi: 10.21656/1000-0887.450096 |
[1] |
XU R C, XIA X H, ZHANG S Z, et al. Interfacial challenges and progress for inorganic all-solid-state lithium batteries[J]. Electrochimica Acta, 2018, 284 : 177-187. doi: 10.1016/j.electacta.2018.07.191
|
[2] |
CHEN Y, YUAN X, HE C, et al. Mechanistic exploration of dendrite growth and inhibition for lithium metal batteries[J]. Energies, 2023, 16 (9): 3745. doi: 10.3390/en16093745
|
[3] |
ZHAO Y, STEIN P, BAI Y, et al. A review on modeling of electro-chemo-mechanics in lithium-ion batteries[J]. Journal of Power Sources, 2019, 413 : 259-283. doi: 10.1016/j.jpowsour.2018.12.011
|
[4] |
TIAN J, CHEN Z, ZHAO Y. Review on modeling for chemo-mechanical behavior at interfaces of all-solid-state lithium-ion batteries and beyond[J]. ACS Omega, 2022, 7 (8): 6455-6462. doi: 10.1021/acsomega.1c06793
|
[5] |
LIN R, HE Y, WANG C, et al. Characterization of the structure and chemistry of the solid-electrolyte interface by cryo-EM leads to high-performance solid-state Li-metal batteries[J]. Nature Nanotechnology, 2022, 17 (7): 768-776. doi: 10.1038/s41565-022-01148-7
|
[6] |
GOLOZAR M, PAOLELLA A, DEMERS H, et al. In situ observation of solid electrolyte interphase evolution in a lithium metal battery[J]. Communications Chemistry, 2019, 2 : 131. doi: 10.1038/s42004-019-0234-0
|
[7] |
CHANG H J, TREASE N M, ILOTT A J, et al. Investigating Li microstructure formation on Li anodes for lithium batteries by in situ 6Li/7Li NMR and SEM[J]. The Journal of Physical Chemistry C, 2015, 119 (29): 16443-16451. doi: 10.1021/acs.jpcc.5b03396
|
[8] |
杨帆, 刘彬, 方岱宁. 基于相场方法的铁基合金高温氧化与生长应力分析[J]. 应用数学和力学, 2011, 32 (6): 710-717. doi: 10.3879/j.issn.1000-0887.2011.06.008
YANG Fan, LIU Bin, FANG Daining. Analysis on high-temperature oxidation and the growth stress of iron-based alloy using phase field method[J]. Applied Mathematics and Mechanics, 2011, 32 (6): 710-717. (in Chinese) doi: 10.3879/j.issn.1000-0887.2011.06.008
|
[9] |
LIANG L, QI Y, XUE F, et al. Nonlinear phase-field model for electrode-electrolyte interface evolution[J]. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 2012, 86 : 051609. doi: 10.1103/PhysRevE.86.051609
|
[10] |
LIANG L, CHEN L Q. Nonlinear phase field model for electrodeposition in electrochemical systems[J]. Applied Physics Letters, 2014, 105 (26): 263903. doi: 10.1063/1.4905341
|
[11] |
CHEN L, ZHANG H W, LIANG L Y, et al. Modulation of dendritic patterns during electrodeposition: a nonlinear phase-field model[J]. Journal of Power Sources, 2015, 300 : 376-385. doi: 10.1016/j.jpowsour.2015.09.055
|
[12] |
YURKIV V, FOROOZAN T, RAMASUBRAMANIAN A, et al. Phase-field modeling of solid electrolyte interface (SEI) influence on Li dendritic behavior[J]. Electrochimica Acta, 2018, 265 : 609-619. doi: 10.1016/j.electacta.2018.01.212
|
[13] |
SHEN X, ZHANG R, SHI P, et al. How does external pressure shape Li dendrites in Li metal batteries?[J]. Advanced Energy Materials, 2021, 11 (10): 2003416. doi: 10.1002/aenm.202003416
|
[14] |
TANTRATIAN K, YAN H, ELLWOOD K, et al. Unraveling the Li penetration mechanism in polycrystalline solid electrolytes[J]. Advanced Energy Materials, 2021, 11 (13): 2003417. doi: 10.1002/aenm.202003417
|
[15] |
WANG Z, JIANG W, ZHAO Y, et al. Chemo-mechanical coupling phase-field modeling of lithium dendrite growth within solid electrolyte[J]. Journal of Solid State Electrochemistry, 2023, 27 (1): 245-253. doi: 10.1007/s10008-022-05316-6
|
[16] |
YANG H, WANG Z. Effects of pressure, temperature, and plasticity on lithium dendrite growth in solid-state electrolytes[J]. Journal of Solid State Electrochemistry, 2023, 27 (10): 2607-2618. doi: 10.1007/s10008-023-05560-4
|
[17] |
WANG X, WANG B, MEYERSON M, et al. A phase-field model integrating reaction-diffusion kinetics and elasto-plastic deformation with application to lithiated selenium-doped germanium electrodes[J]. International Journal of Mechanical Sciences, 2018, 144 : 158-171. doi: 10.1016/j.ijmecsci.2018.05.040
|
[18] |
MA H, XIONG X, GAO P, et al. Eigenstress model for electrochemistry of solid surfaces[J]. Scientific Reports, 2016, 6 : 26897. doi: 10.1038/srep26897
|
[19] |
SARKAR S, AQUINO W. Changes in electrodic reaction rates due to elastic stress and stress-induced surface patterns[J]. Electrochimica Acta, 2013, 111 : 814-822. doi: 10.1016/j.electacta.2013.08.085
|
[20] |
ALLEN S M, CAHN J W. A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening[J]. Acta Metallurgica, 1979, 27 (6): 1085-1095. doi: 10.1016/0001-6160(79)90196-2
|
[21] |
UE M, SAKAUSHI K, UOSAKI K. Basic knowledge in battery research bridging the gap between academia and industry[J]. Materials Horizons, 2020, 7 (8): 1937-1954. doi: 10.1039/D0MH00067A
|
[22] |
GAO L, GUO Z. Phase-field simulation of Li dendrites with multiple parameters influence[J]. Computational Materials Science, 2020, 183 : 109919. doi: 10.1016/j.commatsci.2020.109919
|
[23] |
WANG Y, DANG D, WANG M, et al. Mechanical behavior of electroplated mossy lithium at room temperature studied by flat punch indentation[J]. Applied Physics Letters, 2019, 115 (4): 043903. doi: 10.1063/1.5111150
|
[24] |
NGUYEN Q D, OH E S, CHUNG K H. Nanomechanical properties of polymer binders for Li-ion batteries probed with colloidal probe atomic force microscopy[J]. Polymer Testing, 2019, 76 : 245-253. doi: 10.1016/j.polymertesting.2019.03.025
|
[25] |
SAMSONOV G V, STRAUMANIS M E. Handbook of the physicochemical properties of the elements[J]. Physics Today, 1968, 21 (9): 97.
|
[26] |
NARAYAN S, ANAND L. A large deformation elastic-viscoplastic model for lithium[J]. Extreme Mechanics Letters, 2018, 24 : 21-29. doi: 10.1016/j.eml.2018.08.006
|
[27] |
GOLOZAR M, PAOLELLA A, DEMERS H, et al. Direct observation of lithium metal dendrites with ceramic solid electrolyte[J]. Scientific Reports, 2020, 10 (1): 18410. doi: 10.1038/s41598-020-75456-0
|
[28] |
LUO S, WANG Z, LI X, et al. Growth of lithium-indium dendrites in all-solid-state lithium-based batteries with sulfide electrolytes[J]. Nature Communications, 2021, 12 (1): 6968. doi: 10.1038/s41467-021-27311-7
|
[29] |
JOHAN M R, JIMSON S A, GHAZALI N, et al. Structural, thermal, electrical and mechanical properties of nanosilica-composite polymer electrolytes[J]. International Journal of Materials Research, 2011, 102 (4): 413-419. doi: 10.3139/146.110498
|
[30] |
DA COSTA H M, RAMOS V D, DE OLIVEIRA M G. Degradation of polypropylene (PP) during multiple extrusions: thermal analysis, mechanical properties and analysis of variance[J]. Polymer Testing, 2007, 26 (5): 676-684. doi: 10.1016/j.polymertesting.2007.04.003
|