Citation: | ZHAO Wei, REN Fengli. Finite Time Stabilization of Dynamical Networks Under Pinning Event-Triggered Control[J]. Applied Mathematics and Mechanics, 2025, 46(3): 382-393. doi: 10.21656/1000-0887.450072 |
[1] |
CORTÉS J, BULLO F. Coordination and geometric optimization via distributed dynamical systems[J]. SIAM Journal on Control and Optimization, 2005, 44(5): 1543-1574. doi: 10.1137/S0363012903428652
|
[2] |
REN W. Multi-vehicle consensus with a time-varying reference state[J]. Systems & Control Letters, 2007, 56(7/8): 474-483.
|
[3] |
SMITH T R, HANSSMANN H, LEONARD N E. Orientation control of multiple underwater vehicles with symmetry-breaking potentials[C]//Proceedings of the 40 th IEEE Conference on Decision and Control. Orlando, FL, USA, 2001: 4598-4603.
|
[4] |
BHAT S P, BERNSTEIN D S. Finite-time stability of homogeneous systems[C]//Proceedings of the 1997 American Control Conference. Albuquerque, NM, USA, 1997.
|
[5] |
BHAT S P, BERNSTEIN D S. Nontangency-based Lyapunov tests for convergence and stability in systems having a continuum of equilibria[J]. SIAM Journal on Control and Optimization, 2003, 42(5): 1745-1775. doi: 10.1137/S0363012902407119
|
[6] |
LU W, LIU X, CHEN T. A note on finite-time and fixed-time stability[J]. Neural Networks, 2016, 81: 11-15. doi: 10.1016/j.neunet.2016.04.011
|
[7] |
ZIMENKO K, EFIMOV D, POLYAKOV A. On condition for output finite-time stability and adaptive finite-time control scheme[C]// 2019 IEEE 58 th Conference on Decision and Control (CDC). Nice, France, 2019.
|
[8] |
HADDAD W M, LEE J. Finite-time stabilization and optimal feedback control for nonlinear discrete-time systems[J]. IEEE Transactions on Automatic Control, 2023, 68(3): 1685-1691. doi: 10.1109/TAC.2022.3151195
|
[9] |
赵玮, 任凤丽. 基于自适应控制的四元数时滞神经网络的有限时间同步[J]. 应用数学和力学, 2022, 43(1): 94-103. doi: 10.21656/1000-0887.420068
ZHAO Wei, REN Fengli. Finite time adaptive synchronization of quaternion-value neural networks with time delays[J]. Applied Mathematics and Mechanics, 2022, 43(1): 94-103. (in Chinese) doi: 10.21656/1000-0887.420068
|
[10] |
HONG Y, WANG J, CHENG D. Adaptive finite-time control of nonlinear systems with parametric uncertainty[J]. IEEE Transactions on Automatic Control, 2006, 51(5): 858-862. doi: 10.1109/TAC.2006.875006
|
[11] |
IERVOLINO R, AMBROSINO R. Finite-time stabilization of state dependent impulsive dynamical linear systems[J]. Nonlinear Analysis: Hybrid Systems, 2023, 47: 101305. doi: 10.1016/j.nahs.2022.101305
|
[12] |
WU F, LI C, LIAN J. Finite-time stability of switched nonlinear systems with state jumps: a dwell-time method[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2008, 52: 6061-6072.
|
[13] |
赵玮, 任凤丽. 基于牵制控制的多智能体系统的有限时间与固定时间一致性[J]. 应用数学和力学, 2021, 42(3): 299-307. doi: 10.21656/1000-0887.410190
ZHAO Wei, REN Fengli. Finite-time and fixed-time consensus for multi-agent systems via pinning control[J]. Applied Mathematics and Mechanics, 2021, 42(3): 299-307. (in Chinese) doi: 10.21656/1000-0887.410190
|
[14] |
LIN X, CHEN C C. Finite-time output feedback stabilization of planar switched systems with/without an output constraint[J]. Automatica, 2021, 131: 109728. doi: 10.1016/j.automatica.2021.109728
|
[15] |
LI S, DU H, LIN X. Finite-time consensus algorithm for multi-agent systems with double-integrator dynamics[J]. Automatica, 2011, 47(8): 1706-1712. doi: 10.1016/j.automatica.2011.02.045
|
[16] |
CHEN T, LU W, LIU X. Finite time convergence of pinning synchronization with a single nonlinear controller[J]. Neural Networks, 2021, 143: 246-249. doi: 10.1016/j.neunet.2021.05.036
|
[17] |
CHEN G, LEWIS F L, XIE L. Finite-time distributed consensusvia binary control protocols[J]. Automatica, 2011, 47(9): 1962-1968. doi: 10.1016/j.automatica.2011.05.013
|
[18] |
MATUSIK R, NOWAKOWSKI A, PLASKACZ S, et al. Finite-time stability for differential inclusions with applications to neural networks[J]. SIAM Journal on Control and Optimization, 2020, 58(5): 2854-2870. doi: 10.1137/19M1250078
|
[19] |
CAO Y, REN W, MENG Z. Decentralized finite-time sliding mode estimators and their applications in decentralized finite-time formation tracking[J]. Systems & Control Letters, 2010, 59(9): 522-529.
|
[20] |
HU B, GUAN Z H, FU M. Distributed event-driven control for finite-time consensus[J]. Automatica, 2019, 103: 88-95. doi: 10.1016/j.automatica.2019.01.026
|
[21] |
WU L, LIU K, LÜ J, et al. Finite-time adaptive stability of gene regulatory networks[J]. Neurocomputing, 2019, 338: 222-232. doi: 10.1016/j.neucom.2019.02.011
|
[22] |
HUANG J, WEN C, WANG W, et al. Adaptive finite-time consensus control of a group of uncertain nonlinear mechanical systems[J]. Automatica, 2015, 51: 292-301. doi: 10.1016/j.automatica.2014.10.093
|
[23] |
TABUADA P. Event-triggered real-time scheduling of stabilizing control tasks[J]. IEEE Transactions on Automatic Control, 2007, 52(9): 1680-1685. doi: 10.1109/TAC.2007.904277
|
[24] |
WANG X, LEMMON M D. Event design in event-triggered feedback control systems[C]// 2008 47 th IEEE Conference on Decision and Control. Cancun, Mexico, 2008: 2105-2110.
|
[25] |
DIMAROGONAS D V, FRAZZOLI E, JOHANSSON K H. Distributed event-triggered control for multi-agent systems[J]. IEEE Transactions on Automatic Control, 2012, 57(5): 1291-1297. doi: 10.1109/TAC.2011.2174666
|
[26] |
GHODRAT M, MARQUEZ H J. A new Lyapunov-based event-triggered control of linear systems[J]. IEEE Transactions on Automatic Control, 2023, 68(4): 2599-2606. doi: 10.1109/TAC.2022.3190028
|
[27] |
LI H, LIAO X, HUANG T, et al. Event-triggering sampling based leader-following consensus in second-order multi-agent systems[J]. IEEE Transactions on Automatic Control, 2015, 60(7): 1998-2003. doi: 10.1109/TAC.2014.2365073
|
[28] |
HE W, XU B, HAN Q L, et al. Adaptive consensus control of linear multiagent systems with dynamic event-triggered strategies[J]. IEEE Transactions on Cybernetics, 2019, 50(7): 2996-3008.
|
[29] |
SUN Q, CHEN J, SHI Y. Event-triggered robust MPC of nonlinear cyber-physical systems against DoS attacks[J]. Science China Information Sciences, 2021, 65(1): 110202.
|
[30] |
SHEN J, CAO J. Finite-time synchronization of coupled neural networksvia discontinuous controllers[J]. Cognitive Neurodynamics, 2011, 5(4): 373-385. doi: 10.1007/s11571-011-9163-z
|
[31] |
LU W, CHEN T. New approach to synchronization analysis of linearly coupled ordinary differential systems[J]. Physica D: Nonlinear Phenomena, 2006, 213(2): 214-230. doi: 10.1016/j.physd.2005.11.009
|
[32] |
HARDY G, LITTLEWOOD J, POLYA G. Inequalities[M]. Cambridge: Cambridge University Press, 1952.
|
[33] |
YU W W, CHEN G R, LÜ J H, et al. Synchronization via pinning control on general complex networks[J]. SIAM Journal on Control and Optimization, 2013, 51(2): 21395-21416.
|
[34] |
ZOU F, NOSSEK J A. Bifurcation and chaos in cellular neural networks[J]. IEEE Transactions on Circuits and Systems : Fundamental Theory and Applications, 1993, 40(3): 166-173.
|