Citation: | CHEN Liming, ZHANG Liangqi, WANG Xiaoshuang, XIAO Yao, ZENG Zong. An Accurate Phase Field Method for 2-Phase Flow With Soluble Surfactants[J]. Applied Mathematics and Mechanics, 2024, 45(12): 1455-1472. doi: 10.21656/1000-0887.450027 |
[1] |
BELHAJ A F, ELRAIES K A, MAHMOOD S M, et al. The effect of surfactant concentration, salinity, temperature, and pH on surfactant adsorption for chemical enhanced oil recovery: a review[J]. Journal of Petroleum Exploration and Production Technology, 2020, 10(1): 125-137. doi: 10.1007/s13202-019-0685-y
|
[2] |
ROSEN M J, KUNJAPPU J T. Surfactants and Interfacial Phenomena[M]. John Wiley & Sons, 2012.
|
[3] |
STONE H A, STROOCK A D, AJDARI A. Engineering flows in small devices: microfluidics toward a lab-on-a-chip[J]. Annual Review of Fluid Mechanics, 2004, 36: 381-411. doi: 10.1146/annurev.fluid.36.050802.122124
|
[4] |
孙涛, 庞明军, 费洋. 气泡间距对受污染球形气泡界面性质和尾流的影响[J]. 应用数学和力学, 2020, 41(10): 1157-1170. doi: 10.21656/1000-0887.410099
SUN Tao, PANG Mingjun, FEI Yang. Effects of bubble spacings on interface properties and wake flow for 2 contaminated spherical bubbles[J]. Applied Mathematics and Mechanics, 2020, 41(10): 1157-1170. (in Chinese)) doi: 10.21656/1000-0887.410099
|
[5] |
MANIKANTAN H, SQUIRES T M. Surfactant dynamics: hidden variables controlling fluid flows[J]. Journal of Fluid Mechanics, 2020, 892: P1. doi: 10.1017/jfm.2020.170
|
[6] |
STONE H A. Dynamics of drop deformation and breakup in viscous fluids[J]. Annual Review of Fluid Mechanics, 1994, 26: 65-102. doi: 10.1146/annurev.fl.26.010194.000433
|
[7] |
TRYGGVASON G, BUNNER B, ESMAEELI A, et al. A front-tracking method for the computations of multiphase flow[J]. Journal of Computational Physics, 2001, 169(2): 708-759. doi: 10.1006/jcph.2001.6726
|
[8] |
MITTAL R, IACCARINO G. Immersed boundary methods[J]. Annual Review of Fluid Mechanics, 2005, 37: 239-261. doi: 10.1146/annurev.fluid.37.061903.175743
|
[9] |
STONE H A, LEAL L G. The effects of surfactants on drop deformation and breakup[J]. Journal of Fluid Mechanics, 1990, 220: 161-186. doi: 10.1017/S0022112090003226
|
[10] |
MILLIKEN W J, LEAL L G. The influence of surfactant on the deformation and breakup of a viscous drop: the effect of surfactant solubility[J]. Journal of Colloid and Interface Science, 1994, 166(2): 275-285. doi: 10.1006/jcis.1994.1296
|
[11] |
MURADOGLU M, TRYGGVASON G. A front-tracking method for computation of interfacial flows with soluble surfactants[J]. Journal of Computational Physics, 2008, 227(4): 2238-2262. doi: 10.1016/j.jcp.2007.10.003
|
[12] |
LUO Z Y, SHANG X L, BAI B F. Effect of soluble surfactant on the motion of a confined droplet in a square microchannel[J]. Physics of Fluids, 2019, 31(11): 117104. doi: 10.1063/1.5125949
|
[13] |
LUO Z Y, SHANG X L, BAI B F. Marangoni effect on the motion of a droplet covered with insoluble surfactant in a square microchannel[J]. Physics of Fluids, 2018, 30(7): 077101. doi: 10.1063/1.5026874
|
[14] |
LAI M C, TSENG Y H, HUANG H. An immersed boundary method for interfacial flows with insoluble surfactant[J]. Journal of Computational Physics, 2008, 227(15): 7279-7293. doi: 10.1016/j.jcp.2008.04.014
|
[15] |
LAI M C, TSENG Y H, HUANG H. Numerical simulation of moving contact lines with surfactant by immersed boundary method[J]. Communications in Computational Physics, 2010, 8(4): 735-757. doi: 10.4208/cicp.281009.120210a
|
[16] |
HIRT C W, NICHOLS B D. Volume of fluid (VOF) method for the dynamics of free boundaries[J]. Journal of Computational Physics, 1981, 39(1): 201-225. doi: 10.1016/0021-9991(81)90145-5
|
[17] |
OSHER S, FEDKIW R P. Level set methods: an overview and some recent results[J]. Journal of Computational Physics, 2001, 169(2): 463-502. doi: 10.1006/jcph.2000.6636
|
[18] |
JACQMIN D. Calculation of two-phase Navier-Stokes flows using phase-field modeling[J]. Journal of Computational Physics, 1999, 155(1): 96-127. doi: 10.1006/jcph.1999.6332
|
[19] |
RENARDY Y Y, RENARDY M, CRISTINI V. A new volume-of-fluid formulation for surfactants and simulations of drop deformation under shear at a low viscosity ratio[J]. European Journal of Mechanics B: Fluids, 2002, 21(1): 49-59. doi: 10.1016/S0997-7546(01)01159-1
|
[20] |
JAMES A J, LOWENGRUB J. A surfactant-conserving volume-of-fluid method for interfacial flows with insoluble surfactant[J]. Journal of Computational Physics, 2004, 201(2): 685-722. doi: 10.1016/j.jcp.2004.06.013
|
[21] |
XU J J, LI Z, LOWENGRUB J, et al. A level-set method for interfacial flows with surfactant[J]. Journal of Computational Physics, 2006, 212(2): 590-616. doi: 10.1016/j.jcp.2005.07.016
|
[22] |
LARADJI M, GUO H, GRANT M, et al. The effect of surfactants on the dynamics of phase separation[J]. Journal of Physics: Condensed Matter, 1992, 4(32): 6715-6728. doi: 10.1088/0953-8984/4/32/006
|
[23] |
LIU H H, ZHANG Y H. Phase-field modeling droplet dynamics with soluble surfactants[J]. Journal of Computational Physics, 2010, 229(24): 9166-9187. doi: 10.1016/j.jcp.2010.08.031
|
[24] |
ENGBLOM S, DO-QUANG M, AMBERG G, et al. On diffuse interface modeling and simulation of surfactants in two-phase fluid flow[J]. Communications in Computational Physics, 2013, 14(4): 879-915. doi: 10.4208/cicp.120712.281212a
|
[25] |
SOLIGO G, ROCCON A, SOLDATI A. Coalescence of surfactant-laden drops by phase field method[J]. Journal of Computational Physics, 2019, 376: 1292-1311. doi: 10.1016/j.jcp.2018.10.021
|
[26] |
ZHU G P, KOU J S, YAO B W, et al. Thermodynamically consistent modelling of two-phase flows with moving contact line and soluble surfactants[J]. Journal of Fluid Mechanics, 2019, 879: 327-359. doi: 10.1017/jfm.2019.664
|
[27] |
ZONG Y J, ZHANG C H, LIANG H, et al. Modeling surfactant-laden droplet dynamics by lattice Boltzmann method[J]. Physics of Fluids, 2020, 32(12): 122105. doi: 10.1063/5.0028554
|
[28] |
ZHOU W N, XING Y F, LIU X L, et al. Modeling of droplet dynamics with soluble surfactant by multi-relaxation-time phase-field lattice Boltzmann method[J]. Physics of Fluids, 2023, 35(1): 012109. doi: 10.1063/5.0132174
|
[29] |
GUO Z, LIN P. A thermodynamically consistent phase-field model for two-phase flows with thermocapillary effects[J]. Journal of Fluid Mechanics, 2015, 766: 226-271. doi: 10.1017/jfm.2014.696
|
[30] |
李家宇, 曾忠, 乔龙. 相场方法模拟液滴的动态润湿行为[J]. 应用数学和力学, 2019, 40(9): 957-967. doi: 10.21656/1000-0887.400129
LI Jiayu, ZENG Zhong, QIAO Long. Numerical simulation of droplets' dynamic wetting process with the phase field method[J]. Applied Mathematics and Mechanics, 2019, 40(9): 957-967. (in Chinese)) doi: 10.21656/1000-0887.400129
|
[31] |
TANG T, QIAO Z H. Efficient numerical methods for phase-field equations[J]. Scientia Sinica Mathematica, 2020, 50(6): 775. doi: 10.1360/SSM-2020-0042
|
[32] |
YUE P T, ZHOU C F, FENG J J. Spontaneous shrinkage of drops and mass conservation in phase-field simulations[J]. Journal of Computational Physics, 2007, 223(1): 1-9. doi: 10.1016/j.jcp.2006.11.020
|
[33] |
HUANG Z Y, LIN G, ARDEKANI A M. Consistent, essentially conservative and balanced-force phase-field method to model incompressible two-phase flows[J]. Journal of Computational Physics, 2020, 406: 109192. doi: 10.1016/j.jcp.2019.109192
|
[34] |
DONG S, SHEN J. A time-stepping scheme involving constant coefficient matrices for phase-field simulations of two-phase incompressible flows with large density ratios[J]. Journal of Computational Physics, 2012, 231(17): 5788-5804. doi: 10.1016/j.jcp.2012.04.041
|
[35] |
JIANG G S, SHU C W. Efficient implementation of weighted ENO schemes[J]. Journal of Computational Physics, 1996, 126(1): 202-228. doi: 10.1006/jcph.1996.0130
|
[36] |
YUN A, LI Y B, KIM J. A new phase-field model for a water-oil-surfactant system[J]. Applied Mathematics and Computation, 2014, 229: 422-432. doi: 10.1016/j.amc.2013.12.054
|
[37] |
BRACKBILL J U, KOTHE D B, ZEMACH C. A continuum method for modeling surface tension[J]. Journal of Computational Physics, 1992, 100(2): 335-354. doi: 10.1016/0021-9991(92)90240-Y
|
[38] |
LIU H H, WU L, BA Y, et al. A lattice Boltzmann method for axisymmetric thermocapillary flows[J]. International Journal of Heat and Mass Transfer, 2017, 104: 337-350. doi: 10.1016/j.ijheatmasstransfer.2016.08.068
|
[39] |
CHANG C H, FRANSES E I. Adsorption dynamics of surfactants at the air/water interface: a critical review of mathematical models, data, and mechanisms[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1995, 100: 1-45.
|
[40] |
YUE L Q, CHAI Z H, WANG H L, et al. Improved phase-field-based lattice Boltzmann method for thermocapillary flow[J]. Physical Review E, 2022, 105(1/2): 015314.
|
[41] |
GUERMOND J L, MINEV P, SHEN J. An overview of projection methods for incompressible flows[J]. Computer Methods in Applied Mechanics and Engineering, 2006, 195(44/47): 6011-6045.
|
[42] |
POPINET S. Numerical models of surface tension[J]. Annual Review of Fluid Mechanics, 2018, 50: 49-75. doi: 10.1146/annurev-fluid-122316-045034
|
[43] |
CHEN Z, SHU C, TAN D, et al. Simplified multiphase lattice Boltzmann method for simulating multiphase flows with large density ratios and complex interfaces[J]. Physical Review E, 2018, 98(6): 063314. doi: 10.1103/PhysRevE.98.063314
|
[44] |
XIAO Y, ZENG Z, ZHANG L Q, et al. A spectral element-based phase field method for incompressible two-phase flows[J]. Physics of Fluid, 2022, 34(2): 022114. doi: 10.1063/5.0077372
|
[45] |
ALAND S, VOIGT A. Benchmark computations of diffuse interface models for two-dimensional bubble dynamics[J]. International Journal for Numerical Methods in Fluids, 2012, 69(3): 747-761. doi: 10.1002/fld.2611
|
[46] |
TAYLOR G I. The formation of emulsions in definable fields of flow[J]. Proceedings of the Royal Society of London (Series A): Containing Papers of a Mathematical and Physical Character, 1934, 146(858): 501-523.
|
[47] |
SHAPIRA M, HABER S. Low Reynolds number motion of a droplet in shear flow including wall effects[J]. International Journal of Multiphase Flow, 1990, 16(2): 305-321. doi: 10.1016/0301-9322(90)90061-M
|
[48] |
ZHOU H, POZRIKIDIS C. The flow of suspensions in channels: single files of drops[J]. Physics of Fluids A: Fluid Dynamics, 1993, 5(2): 311-324. doi: 10.1063/1.858893
|
[49] |
LI J, RENARDY Y Y, RENARDY M. Numerical simulation of breakup of a viscous drop in simple shear flow through a volume-of-fluid method[J]. Physics of Fluids, 2000, 12(2): 269-282. doi: 10.1063/1.870305
|
[50] |
SOLIGO G, ROCCON A, SOLDATI A. Deformation of clean and surfactant-laden droplets in shear flow[J]. Meccanica, 2020, 55(2): 371-386. doi: 10.1007/s11012-019-00990-9
|