Volume 45 Issue 12
Dec.  2024
Turn off MathJax
Article Contents
XI Feng, LI Fang, HU Yachao, TAN Yinghua, WEN Xinyue. Strength Evaluation Criteria and Equivalent Plastic Strain for Ideal M-C Materials[J]. Applied Mathematics and Mechanics, 2024, 45(12): 1567-1576. doi: 10.21656/1000-0887.440345
Citation: XI Feng, LI Fang, HU Yachao, TAN Yinghua, WEN Xinyue. Strength Evaluation Criteria and Equivalent Plastic Strain for Ideal M-C Materials[J]. Applied Mathematics and Mechanics, 2024, 45(12): 1567-1576. doi: 10.21656/1000-0887.440345

Strength Evaluation Criteria and Equivalent Plastic Strain for Ideal M-C Materials

doi: 10.21656/1000-0887.440345
  • Received Date: 2023-12-04
  • Rev Recd Date: 2024-03-16
  • Publish Date: 2024-12-01
  • Based on the ideal Mohr Coulomb (M-C) yield criterion, the concepts and formulas of equivalent stresses in tension, compression, and shear, as well as the corresponding three strength evaluation conditions were presented. According to the equivalent principle of plastic work, the equivalent plastic strain and the equivalent plastic shear strain in tension and compression were derived, which are conjugated with the equivalent stress mentioned above. For different friction coefficients, the variation characteristics of these equivalent strains were discussed. Differing from the Mises equivalent strain, the M-C equivalent strain can reflect the influence of the hydrostatic pressure, and can also degenerate into a simple stress state. These concepts of equivalent stress and equivalent strain have clear physical meanings and can be applied to more accurately and effectively evaluate the strengths of materials with different tensile and compressive properties. They also have direct application values for calibrating constitutive model parameters under complex stress states through experiments under simple stress states.
  • loading
  • [1]
    王仁, 熊祝华, 黄文彬. 塑性力学基础[M]. 北京: 科学出版社, 1982.

    WANG Ren, XIONG Zhuhua, HAUNG Wenbin. Fundamentals of Plastic Mechanics[M]. Beijing: Science Press, 1982. (in Chinese)
    [2]
    周喆, 秦伶俐, 黄文彬, 等. 有限变形下的等效应力和等效应变问题[J]. 应用数学和力学, 2004, 25(5): 542-550. http://www.applmathmech.cn/article/id/75

    ZHOU Zhe, QIN Lingli, HUANG Wenbin, et al. Effective stress and strain in finite deformation[J]. Applied Mathematics and Mechanics, 2004, 25(5): 542-550. (in Chinese) http://www.applmathmech.cn/article/id/75
    [3]
    VERSHININ V V. A correct form of Bai-Wierzbicki plasticity model and its extension for strain rate and temperature dependence[J]. International Journal of Solids and Structures, 2017, 126: 150-162.
    [4]
    POURHOSSEINI O, SHABANIMASHCOOL M. Development of an elasto-plastic constitutive model for intact rocks[J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 66: 1-12. doi: 10.1016/j.ijrmms.2013.11.010
    [5]
    张学言. 岩土塑性力学[M]. 北京: 人民交通出版社, 1993.

    ZHANG Xueyan. Geotechnics Plastic Mechanics[M]. Beijing: China Communications Press, 1993. (in Chinese)
    [6]
    BRIDGMAN P W. Studies in Large Plastic Flow and Fracture: With Special Emphasis on the Effects of Hydrostatic Pressure[M]. Cambridge: Harvard University Press, 1964.
    [7]
    ALGARNI M, GHAZALI S, ZWAWI M. The emerging of stress triaxiality and Lode angle in both solid and damage mechanics: a review[J]. Mechanics of Solids, 2021, 56(5): 787-806. doi: 10.3103/S0025654421050058
    [8]
    STOUGHTON T B, YOON J W. A pressure-sensitive yield criterion under a non-associated flow rule for sheet metal forming[J]. International Journal of Plasticity, 2004, 20(4/5): 705-731.
    [9]
    ARETZ H. A consistent plasticity theory of incompressible and hydrostatic pressure sensitive metals[J]. Mechanics Research Communications, 2007, 34(4): 344-351. doi: 10.1016/j.mechrescom.2007.01.002
    [10]
    BAI Y, WIERZBICKI T. A new model of metal plasticity and fracture with pressure and Lode dependence[J]. International Journal of Plasticity, 2008, 24(6): 1071-1096. doi: 10.1016/j.ijplas.2007.09.004
    [11]
    JOHNSON G R, COOK W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures[J]. Engineering Fracture Mechanics, 1985, 21(1): 31-48. doi: 10.1016/0013-7944(85)90052-9
    [12]
    HAN Peihua, CHENG Peng, YUAN Shuai, et al. Characterization of ductile fracture criterion for API X80 pipeline steel based on a phenomenological approach[J]. Thin-Walled Structures, 2021, 164: 107254. doi: 10.1016/j.tws.2020.107254
    [13]
    VERSHININ V V. Validation of metal plasticity and fracture models through numerical simulation of high velocity perforation[J]. International Journal of Solids and Structures, 2015, 67/68: 127-138. doi: 10.1016/j.ijsolstr.2015.04.007
    [14]
    PAREDES M, WIERZBICKI T. On mechanical response of zircaloy-4 under a wider range of stress states: from uniaxial tension to uniaxial compression[J]. International Journal of Solids and Structures, 2020, 206: 198-223. doi: 10.1016/j.ijsolstr.2020.09.007
    [15]
    BAI Yuanli, WIERZBICKI T. Application of extended Mohr-Coulomb criterion to ductile fracture[J]. International Journal of Fracture, 2010, 161(1): 1-20. doi: 10.1007/s10704-009-9422-8
    [16]
    DA SILVA SANTOS I, SARZOSA D F B, PAREDES M. Ductile fracture modeling using the modified Mohr-Coulomb model coupled with a softening law for an ASTM A285 steel[J]. Thin-Walled Structures, 2022, 176: 109341. doi: 10.1016/j.tws.2022.109341
    [17]
    GRANUM H, MORIN D, BØRVIK T, et al. Calibration of the modified Mohr-Coulomb fracture model by use of localization analyses for three tempers of an AA6016 aluminium alloy[J]. International Journal of Mechanical Sciences, 2021, 192: 106122. doi: 10.1016/j.ijmecsci.2020.106122
    [18]
    ABAQUS Inc. ABAQUS Analysis User's Manual v[Z]. 2023.
    [19]
    LI X X. Parametric study on numerical simulation of missile punching test using concrete damaged plasticity (CDP) model[J]. International Journal of Impact Engineering, 2020, 144: 103652. doi: 10.1016/j.ijimpeng.2020.103652
    [20]
    CHEN W F. Constitutive Equations for Engineering Materials: Plasticity and Modeling[M]. New York: John Wiley & Sons Inc, 1994.
    [21]
    赵亚溥. 近代连续介质力学[M]. 北京: 科学出版社, 2016.

    ZHAO Yapu. Modern Continuum Mechanics[M]. Beijing: Science Press, 2016. (in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views (89) PDF downloads(12) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return