Volume 45 Issue 3
Mar.  2024
Turn off MathJax
Article Contents
XU Lei, ZHANG Weisheng, ZHU Bao, GUO Xu. Data-Driven Sound Quality Optimization of Acoustic Devices[J]. Applied Mathematics and Mechanics, 2024, 45(3): 253-260. doi: 10.21656/1000-0887.440339
Citation: XU Lei, ZHANG Weisheng, ZHU Bao, GUO Xu. Data-Driven Sound Quality Optimization of Acoustic Devices[J]. Applied Mathematics and Mechanics, 2024, 45(3): 253-260. doi: 10.21656/1000-0887.440339

Data-Driven Sound Quality Optimization of Acoustic Devices

doi: 10.21656/1000-0887.440339
  • Received Date: 2023-11-23
  • Rev Recd Date: 2023-12-24
  • Publish Date: 2024-03-01
  • Sound quality is an important measure of the sound performance of acoustic devices. However, the process of optimizing the sound quality requires a collaborative optimization of the responses at multiple frequency points, resulting in poor solvability of the optimization problem. A data-driven acoustic channel topology optimization design method was proposed to enable fast prediction of the acoustic frequency responses in the acoustic-structural system and then optimize the sound quality of acoustic devices with explicit topology optimization techniques. The non-linear relationship between structural geometry parameters, excitation frequencies and acoustic frequency responses was modelled with artificial neural networks. An artificial neural network model for acoustic frequency responses was developed by training a multilayer feedforward network with the structural geometrical parameters in the moving morphable components method and the excitation frequencies as input variables, and the acoustic pressure frequency responses as output variables. The obtained results can effectively reduce the range difference of the sound pressure level (SPL) in the target frequency band from 44.89 dB to 6.49 dB. Compared with the traditional optimization method, the solution speed is about 16.3 times as before, which shows that the current method is effective for the rapid solution of sound quality optimization problems.
  • loading
  • [1]
    BENDSOE M P, SIGMUND O. Topology Optimization: Theory, Methods, and Applications[M]. Springer Berlin Heidelberg, 2003.
    [2]
    DILGEN C B, DILGEN S B, AAGE N, et al. Topology optimization of acoustic mechanical interaction problems: a comparative review[J]. Structural and Multidisciplinary Optimization, 2019, 60(2): 779-801. doi: 10.1007/s00158-019-02236-4
    [3]
    DESAI J, FAURE A, MICHAILIDIS G, et al. Topology optimization in acoustics and elasto-acoustics via alevel-set method[J]. Journal of Sound and Vibration, 2018, 420: 73-103. doi: 10.1016/j.jsv.2018.01.032
    [4]
    YOON G H, JENSEN J S, SIGMUND O. Topology optimization of acoustic-structure interaction problems using a mixed finite element formulation[J]. International Journal for Numerical Methods in Engineering, 2007, 70(9): 1049-1075. doi: 10.1002/nme.1900
    [5]
    DU J B, OLHOFF N. Topological design of vibrating structures with respect to optimum sound pressure characteristics in a surrounding acoustic medium[J]. Structural and Multidisciplinary Optimization, 2010, 42: 43-54. doi: 10.1007/s00158-009-0477-y
    [6]
    LEE J, WANG S Y, DIKEC A. Topology optimization for the radiation and scattering of sound from thin-body using genetic algorithms[J]. Journal of Sound and Vibration, 2004, 276(3/5): 899-918.
    [7]
    HU J, YAO S, HUANG X D. Topology optimization of dynamic acoustic-mechanical structures using the ersatz material model[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 372: 113387. doi: 10.1016/j.cma.2020.113387
    [8]
    SHU L, WANG M Y, MA Z D. Level set based topology optimization of vibrating structures for coupled acoustic-structural dynamics[J]. Computers & Structures, 2014, 132: 34-42.
    [9]
    DVHRING M B, JENSEN J S, SIGMUND O. Acoustic design by topology optimization[J]. Journal of Sound and Vibration, 2008, 317(3/5): 557-575.
    [10]
    NIU B, OLHOFF N, LUND E, et al. Discrete material optimization of vibrating laminated composite plates for minimum sound radiation[J]. International Journal of Solids and Structures, 2010, 47(16): 2097-2114. doi: 10.1016/j.ijsolstr.2010.04.008
    [11]
    GUO X, ZHANG W S, ZHONG W L. Doing topology optimization explicitly and geometrically: a new moving morphable components based framework[J]. Journal of Applied Mechanics, 2014, 81: 081009. doi: 10.1115/1.4027609
    [12]
    XIA B Z, YU D J, LIU J. Hybrid uncertain analysis for structural-acoustic problem with random and interval parameters[J]. Journal of Sound and Vibration, 2013, 332(11): 2701-2720. doi: 10.1016/j.jsv.2012.12.028
    [13]
    CHEN N, YU D J, XIA B Z, et al. Microstructural topology optimization of structural-acoustic coupled systems for minimizing sound pressure level[J]. Structural and Multidisciplinary Optimization, 2017, 56: 1259-1270. doi: 10.1007/s00158-017-1718-0
    [14]
    ZHANG W S, YUAN J, ZHANG J, et al. A new topology optimization approach based on moving morphable components (MMC) and the ersatz material model[J]. Structural and Multidisciplinary Optimization, 2016, 53: 1243-1260. doi: 10.1007/s00158-015-1372-3
    [15]
    王沐晨, 李立州, 张珺, 等. 基于卷积神经网络气动力降阶模型的翼型优化方法[J]. 应用数学和力学, 2022, 43(1): 77-83. doi: 10.21656/1000-0887.420137

    WANG Muchen, LI Lizhou, ZHANG Jun, et al. An airfoil optimization method based on the convolutional neural network aerodynamic reduced order model[J]. Applied Mathematics and Mechanics, 2022, 43(1): 77-83. (in Chinese) doi: 10.21656/1000-0887.420137
    [16]
    姚明辉, 王兴志, 吴启亮, 等. 基于RBF神经网络的压气机叶片面压力场预测研究[J]. 应用数学和力学, 2023, 44(10): 1187-1199. doi: 10.21656/1000-0887.440054

    YAO Minghui, WANG Xingzhi, WU Qiliang, et al. RBF neural network based prediction on blade surface pressure fields in compressors[J]. Applied Mathematics and Mechanics, 2023, 44(10): 1187-1199. (in Chinese) doi: 10.21656/1000-0887.440054
    [17]
    王青山, 严波, 陈岩, 等. 基于降阶模型和数据驱动的动态结构数字孪生方法[J]. 应用数学和力学, 2023, 44(7): 757-768. doi: 10.21656/1000-0887.430384

    WANG Qingshan, YAN Bo, CHEN Yan, et al. Digital twin method for dynamic structures based on reduced order models and data driving[J]. Applied Mathematics and Mechanics, 2023, 44(7): 757-768. (in Chinese) doi: 10.21656/1000-0887.430384
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Article Metrics

    Article views (377) PDF downloads(88) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return