Citation: | CHANG Long, BUREN Mandula, SUN Yanjun, JIAN Yongjun. Periodic Electroosmotic Flow of the Jeffrey Fluid in Microchannel Between Two Sinusoidally Wavy Walls[J]. Applied Mathematics and Mechanics, 2024, 45(5): 622-636. doi: 10.21656/1000-0887.440333 |
[1] |
STONE H A, STROOCK A D, AJDARI A. Engineering flows in small devices: microfluidics toward a lab-on-a-chip[J]. Annual Review of Fluid Mechanics, 2004, 36: 381-411. doi: 10.1146/annurev.fluid.36.050802.122124
|
[2] |
BAYRAKTAR T, PIDUGU S B. Characterization of liquid flows in microfluidic systems[J]. International Journal of Heat and Mass Transfer, 2006, 49(5/6): 815-824.
|
[3] |
BANERJEE D, PATI S, BISWAS P. Analytical study of two-layered mixed electro-osmotic and pressure-driven flow and heat transfer in a microchannel with hydrodynamic slippage and asymmetric wall heating[J]. Physics of Fluids, 2022, 34(3): 032013. doi: 10.1063/5.0080107
|
[4] |
JIAN Y, YANG L, LIU Q. Time periodic electro-osmotic flow through a microannulus[J]. Physics of Fluids, 2010, 22(4): 042001. doi: 10.1063/1.3358473
|
[5] |
KANG Y, YANG C, HUANG X. Electroosmotic flow in a capillary annulus with high zeta potentials[J]. Journal of Colloid and Interface Science, 2002, 253(2): 285-294. doi: 10.1006/jcis.2002.8453
|
[6] |
CHANG L, SUN Y, BUREN M, et al. Thermal and flow analysis of fully developed electroosmotic flow in parallel-plate micro-and nanochannels with surface charge-dependent slip[J]. Micromachines, 2022, 13(12): 2166. doi: 10.3390/mi13122166
|
[7] |
邢靖楠, 菅永军. 矩形纳米管道中的电动能量转换效率[J]. 应用数学和力学, 2016, 37(4): 363-372. doi: 10.3879/j.issn.1000-0887.2016.04.004
XING Jingnan, JIAN Yongjun. Electrokinetic energy conversion efficiency in rectangular nanochannels[J]. Applied Mathematics and Mechanics, 2016, 37(4): 363-372. (in Chinese) doi: 10.3879/j.issn.1000-0887.2016.04.004
|
[8] |
许丽娜, 菅永军. 柔性圆柱形微管道内的电动流动及传热研究[J]. 应用数学和力学, 2019, 40(4): 408-418. doi: 10.21656/1000-0887.390155
XU Lina, JIAN Yongjun. Electrokinetic flow and heat transfer in soft microtubes[J]. Applied Mathematics and Mechanics, 2019, 40(4): 408-418. (in Chinese) doi: 10.21656/1000-0887.390155
|
[9] |
王爽, 菅永军. 周期壁面电势调制下平行板微管道中的电磁电渗流动[J]. 应用数学和力学, 2020, 41(4): 396-405. doi: 10.21656/1000-0887.400151
WANG Shuang, JIAN Yongjun. Magnetohydrodynamic electroosmotic flow in zeta potential patterned micro-parallel channels[J]. Applied Mathematics and Mechanics, 2020, 41(4): 396-405. (in Chinese) doi: 10.21656/1000-0887.400151
|
[10] |
TANG G, YAN D, YANG C, et al. Assessment of Joule heating and its effects on electroosmotic flow and electrophoretic transport of solutes in microfluidic channels[J]. Electrophoresis, 2006, 27(3): 628-639. doi: 10.1002/elps.200500681
|
[11] |
LIU Q, JIAN Y, YANG L. Time periodic electroosmotic flow of the generalized Maxwell fluids between two micro-parallel plates[J]. Journal of Non-Newtonian Fluid Mechanics, 2011, 166(9/10): 478-486.
|
[12] |
LIU Q, JIAN Y, YANG L. Alternating current electroosmotic flow of the Jeffreys fluids through a slit microchannel[J]. Physics of Fluids, 2011, 23(10): 102001. doi: 10.1063/1.3640082
|
[13] |
郑佳璇, 梁韵笛, 菅永军. 高zeta势下Phan-Thien-Tanner(PTT)流体的电渗微推进器[J]. 应用数学和力学, 2023, 44(10): 1213-1225. doi: 10.21656/1000-0887.430346
ZHENG Jiaxuan, LIANG Yundi, JIAN Yongjun. Electroosmotic micro thrusters of Phan-Thien-Tanner (PTT) fluid at high zeta potential[J]. Applied Mathematics and Mechanics, 2023, 44(10): 1213-1225. (in Chinese) doi: 10.21656/1000-0887.430346
|
[14] |
段娟, 陈耀钦, 朱庆勇. 微扩张管道内幂律流体非定常电渗流动[J]. 物理学报, 2016, 65(3): 034702. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201603020.htm
DUAN Juan, CHEN Yaoqin, ZHU Qingyong. Electroosmotically-driven flow of power-law fluid in a micro-diffuser[J]. Acta Physica Sinica, 2016, 65(3): 034702. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201603020.htm
|
[15] |
WANG C Y. On Stokes flow between corrugated plates[J]. Journal of Applied Mechanics, 1979, 46: 462-464. doi: 10.1115/1.3424575
|
[16] |
CHU Z K H. Slip flow in an annulus with corrugated walls[J]. Journal of Physics D: Applied Physics, 2000, 33(6): 627. doi: 10.1088/0022-3727/33/6/307
|
[17] |
MALEVICH A E, MITYUSHEV V V, ADLER P M. Couette flow in channels with wavy walls[J]. Acta Mechanica, 2008, 197(3/4): 247-283.
|
[18] |
长龙, 刘全生, 菅永军, 等. 具有正弦粗糙度的环形微管道中脉冲流动[J]. 应用数学和力学, 2016, 37(10): 1118-1128. doi: 10.21656/1000-0887.370116
CHANG Long, LIU Quansheng, JIAN Yongjun, et al. Oscillating flow in annular microchannels with sinusoidally corrugated walls[J]. Applied Mathematics and Mechanics, 2016, 37(10): 1118-1128. (in Chinese) doi: 10.21656/1000-0887.370116
|
[19] |
XIA Z, MEI R, SHEPLAK M, et al. Electroosmotically driven creeping flows in a wavy microchannel[J]. Microfluidics and Nanofluidics, 2009, 6: 37-52. doi: 10.1007/s10404-008-0290-8
|
[20] |
CHO C C, CHEN C L. Electrokinetically-driven non-Newtonian fluid flow in rough microchannel with complex-wavy surface[J]. Journal of Non-Newtonian Fluid Mechanics, 2012, 173: 13-20.
|
[21] |
CHO C C, CHEN C L. Characteristics of combined electroosmotic flow and pressure-driven flow in microchannels with complex-wavy surfaces[J]. International Journal of Thermal Sciences, 2012, 61: 94-105. doi: 10.1016/j.ijthermalsci.2012.06.008
|
[22] |
CHO C C, CHEN C L, CHEN C K. Characteristics of transient electroosmotic flow in microchannels with complex-wavy surface and periodic time-varying electric field[J]. Journal of Fluids Engineering, 2013, 135(2): 021301. doi: 10.1115/1.4023441
|
[23] |
肖水云, 李鸣, 杨大勇. PNP模型的正弦粗糙微通道幂律流体电渗流研究[J]. 机械科学与技术, 2017, 36(3): 442-447. https://www.cnki.com.cn/Article/CJFDTOTAL-JXKX201703019.htm
XIAO Shuiyun, LI Ming, YANG Dayong. Investigating effects of sinusoidal surface roughness on power-law fluid electroosmotic flow in microchannels using PNP model[J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(3): 442-447. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXKX201703019.htm
|
[24] |
YOSHIDA H, KINJO T, WASHIZU H. Analysis of electro-osmotic flow in a microchannel with undulated surfaces[J]. Computers & Fluids, 2016, 124: 237-245. doi: 10.11897/SP.J.1016.2016.00237
|
[25] |
SHU Y C, CHANG C C, CHEN Y S, et al. Electro-osmotic flow in a wavy microchannel: coherence between the electric potential and the wall shape function[J]. Physics of Fluids, 2010, 22(8): 082001. doi: 10.1063/1.3467035
|
[26] |
CHANG L, JIAN Y, BUREN M, et al. Electroosmotic flow through a microtube with sinusoidal roughness[J]. Journal of Molecular Liquids, 2016, 220: 258-264. doi: 10.1016/j.molliq.2016.04.054
|
[27] |
KERAMATI H, SADEGHI A, SAIDI M H, et al. Analytical solutions for thermo-fluidic transport in electroosmotic flow through rough microtubes[J]. International Journal of Heat and Mass Transfer, 2016, 92: 244-251. doi: 10.1016/j.ijheatmasstransfer.2015.08.089
|
[28] |
MESSINGER R J, SQUIRES T M. Suppression of electro-osmotic flow by surface roughness[J]. Physical Review Letters, 2010, 105(14): 144503. doi: 10.1103/PhysRevLett.105.144503
|
[29] |
FAKHARI M M, MIRBOZORGI S A. Numerical analysis of the effects of roughness on the electro-osmotic laminar flow between two parallel plates[J]. Meccanica, 2021, 56: 1025-1045. doi: 10.1007/s11012-020-01257-4
|
[30] |
MA N, SUN Y, JIAN Y. Electromagnetohydrodynamic (EMHD) flow in a microchannel with random surface roughness[J]. Micromachines, 2023, 14: 1617. doi: 10.3390/mi14081617
|
[31] |
WANG Z, SUN Y, JIAN Y. The effect of random roughness on the electromagnetic flow in a micropipe[J]. Micromachines, 2023, 14: 2054. doi: 10.3390/mi14112054
|
[32] |
HOSHAM H A, THABET E N, ABD-ALLA A M, et al. Dynamic patterns of electroosmosis peristaltic flow of a Bingham fluid model in a complex wavy microchannel[J]. Scientific Reports, 2023, 13(1): 8686. doi: 10.1038/s41598-023-35410-2
|
[33] |
ZHU Q, SU R, HU L, et al. Heat transfer enhancement for microchannel heat sink by strengthening fluids mixing with backward right-angled trapezoidal grooves in channel sidewalls[J]. International Communications in Heat and Mass Transfer, 2022, 135: 106106. doi: 10.1016/j.icheatmasstransfer.2022.106106
|
[34] |
MOHAMMADI R, SHAHKARAMI N. Performance improvement of rectangular microchannel heat sinks using nanofluids and wavy channels[J]. Numerical Heat Transfer (Part A): Applications, 2022, 82(10): 619-639. doi: 10.1080/10407782.2022.2083840
|
[35] |
MARTÍNEZ L, BAUTISTA O, ESCANDÓN J, et al. Electroosmotic flow of a Phan-Thien-Tanner fluid in a wavy-wall microchannel[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 498: 7-19.
|
[36] |
MEHTA S K, PATI S, BARANYI L. Steric effect induced heat transfer for electroosmotic flow of Carreau fluid through a wavy microchannel[J]. Technische Mechanik-European Journal of Engineering Mechanics, 2023, 43(1): 2-12.
|
[37] |
SI D, JIAN Y. Electromagnetohydrodynamic (EMHD) micropump of Jeffrey fluids through two parallel microchannels with corrugated walls[J]. Journal of Physics D: Applied Physics, 2015, 48(8): 085501. doi: 10.1088/0022-3727/48/8/085501
|
[38] |
PARK H M, LEE J S, KIM T W. Comparison of the Nernst-Planck model and the Poisson-Boltzmann model for electroosmotic flows in microchannels[J]. Journal of Colloid and Interface Science, 2007, 315(2): 731-739. doi: 10.1016/j.jcis.2007.07.007
|
[39] |
SOUSA J J, AFONSO A M, PINHO F T, et al. Effect of the skimming layer on electro-osmotic-Poiseuille flows of viscoelastic fluids[J]. Microfluidics and Nanofluidics, 2011, 10: 107-122. doi: 10.1007/s10404-010-0651-y
|
[40] |
BIRD R B, CURTISS C F, ARMSTRONG R C, et al. Dynamics of Polymeric Liquids[M]. Kinetic Theory, Vol 2. Wiley, 1987.
|