Volume 45 Issue 5
May  2024
Turn off MathJax
Article Contents
CHANG Long, BUREN Mandula, SUN Yanjun, JIAN Yongjun. Periodic Electroosmotic Flow of the Jeffrey Fluid in Microchannel Between Two Sinusoidally Wavy Walls[J]. Applied Mathematics and Mechanics, 2024, 45(5): 622-636. doi: 10.21656/1000-0887.440333
Citation: CHANG Long, BUREN Mandula, SUN Yanjun, JIAN Yongjun. Periodic Electroosmotic Flow of the Jeffrey Fluid in Microchannel Between Two Sinusoidally Wavy Walls[J]. Applied Mathematics and Mechanics, 2024, 45(5): 622-636. doi: 10.21656/1000-0887.440333

Periodic Electroosmotic Flow of the Jeffrey Fluid in Microchannel Between Two Sinusoidally Wavy Walls

doi: 10.21656/1000-0887.440333
  • Received Date: 2023-11-11
  • Rev Recd Date: 2024-01-22
  • Publish Date: 2024-05-01
  • The periodic electroosmotic flow of the Jeffrey fluid in microchannel between 2 sinusoidal wavy walls was studied. The momentum equation was solved with the perturbation expansion method, to give the approximate analytical velocity and volume flow rate of the periodic electroosmotic flow of the Jeffrey fluid in the parallel-wall microchannel. The influences of relevant dimensionless parameters, such as oscillation Reynolds number ReΩ, pressure gradient G, Deborah number De, retardation time λ2ω, electric width K, small wavy amplitude δ, phase difference θ and wave number λ on mean velocity um(t) and amplitude |Um| of the mean velocity, were investigated. The study reveals a distinct difference in the velocity amplitudes between Newtonian, Maxwell, and Jeffrey fluids. The velocity distribution of the Jeffrey fluid is significantly influenced by wavy surface, exhibiting pronounced fluctuations. Furthermore, the velocity distribution depends on phase difference θ of the upper and lower wavy surfaces. As oscillation Reynolds number ReΩ increases, the AC EOF velocity and mean velocity um(t) exhibits rapid oscillations, with the amplitude becoming increasingly smaller. Similarly, Deborah number De plays a role similar to ReΩ, facilitating the AC EOF velocity profile to oscillate easily under the action of an external electric field. An increase in retardation time λ2ω results in decrease in the amplitude of the AC EOF velocity profile and mean velocity amplitude |Um|. For a given ReΩ, phase lag χ (representing the phase difference between the electric field and the mean velocity) exhibits a significant increase or decrease with θ. Phase lag χ decreases with G, λ2ω, and θ. However, for larger λ values (such as λ>3.4), there is almost no change of phase lag χ.
  • loading
  • [1]
    STONE H A, STROOCK A D, AJDARI A. Engineering flows in small devices: microfluidics toward a lab-on-a-chip[J]. Annual Review of Fluid Mechanics, 2004, 36: 381-411. doi: 10.1146/annurev.fluid.36.050802.122124
    [2]
    BAYRAKTAR T, PIDUGU S B. Characterization of liquid flows in microfluidic systems[J]. International Journal of Heat and Mass Transfer, 2006, 49(5/6): 815-824.
    [3]
    BANERJEE D, PATI S, BISWAS P. Analytical study of two-layered mixed electro-osmotic and pressure-driven flow and heat transfer in a microchannel with hydrodynamic slippage and asymmetric wall heating[J]. Physics of Fluids, 2022, 34(3): 032013. doi: 10.1063/5.0080107
    [4]
    JIAN Y, YANG L, LIU Q. Time periodic electro-osmotic flow through a microannulus[J]. Physics of Fluids, 2010, 22(4): 042001. doi: 10.1063/1.3358473
    [5]
    KANG Y, YANG C, HUANG X. Electroosmotic flow in a capillary annulus with high zeta potentials[J]. Journal of Colloid and Interface Science, 2002, 253(2): 285-294. doi: 10.1006/jcis.2002.8453
    [6]
    CHANG L, SUN Y, BUREN M, et al. Thermal and flow analysis of fully developed electroosmotic flow in parallel-plate micro-and nanochannels with surface charge-dependent slip[J]. Micromachines, 2022, 13(12): 2166. doi: 10.3390/mi13122166
    [7]
    邢靖楠, 菅永军. 矩形纳米管道中的电动能量转换效率[J]. 应用数学和力学, 2016, 37(4): 363-372. doi: 10.3879/j.issn.1000-0887.2016.04.004

    XING Jingnan, JIAN Yongjun. Electrokinetic energy conversion efficiency in rectangular nanochannels[J]. Applied Mathematics and Mechanics, 2016, 37(4): 363-372. (in Chinese) doi: 10.3879/j.issn.1000-0887.2016.04.004
    [8]
    许丽娜, 菅永军. 柔性圆柱形微管道内的电动流动及传热研究[J]. 应用数学和力学, 2019, 40(4): 408-418. doi: 10.21656/1000-0887.390155

    XU Lina, JIAN Yongjun. Electrokinetic flow and heat transfer in soft microtubes[J]. Applied Mathematics and Mechanics, 2019, 40(4): 408-418. (in Chinese) doi: 10.21656/1000-0887.390155
    [9]
    王爽, 菅永军. 周期壁面电势调制下平行板微管道中的电磁电渗流动[J]. 应用数学和力学, 2020, 41(4): 396-405. doi: 10.21656/1000-0887.400151

    WANG Shuang, JIAN Yongjun. Magnetohydrodynamic electroosmotic flow in zeta potential patterned micro-parallel channels[J]. Applied Mathematics and Mechanics, 2020, 41(4): 396-405. (in Chinese) doi: 10.21656/1000-0887.400151
    [10]
    TANG G, YAN D, YANG C, et al. Assessment of Joule heating and its effects on electroosmotic flow and electrophoretic transport of solutes in microfluidic channels[J]. Electrophoresis, 2006, 27(3): 628-639. doi: 10.1002/elps.200500681
    [11]
    LIU Q, JIAN Y, YANG L. Time periodic electroosmotic flow of the generalized Maxwell fluids between two micro-parallel plates[J]. Journal of Non-Newtonian Fluid Mechanics, 2011, 166(9/10): 478-486.
    [12]
    LIU Q, JIAN Y, YANG L. Alternating current electroosmotic flow of the Jeffreys fluids through a slit microchannel[J]. Physics of Fluids, 2011, 23(10): 102001. doi: 10.1063/1.3640082
    [13]
    郑佳璇, 梁韵笛, 菅永军. 高zeta势下Phan-Thien-Tanner(PTT)流体的电渗微推进器[J]. 应用数学和力学, 2023, 44(10): 1213-1225. doi: 10.21656/1000-0887.430346

    ZHENG Jiaxuan, LIANG Yundi, JIAN Yongjun. Electroosmotic micro thrusters of Phan-Thien-Tanner (PTT) fluid at high zeta potential[J]. Applied Mathematics and Mechanics, 2023, 44(10): 1213-1225. (in Chinese) doi: 10.21656/1000-0887.430346
    [14]
    段娟, 陈耀钦, 朱庆勇. 微扩张管道内幂律流体非定常电渗流动[J]. 物理学报, 2016, 65(3): 034702. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201603020.htm

    DUAN Juan, CHEN Yaoqin, ZHU Qingyong. Electroosmotically-driven flow of power-law fluid in a micro-diffuser[J]. Acta Physica Sinica, 2016, 65(3): 034702. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201603020.htm
    [15]
    WANG C Y. On Stokes flow between corrugated plates[J]. Journal of Applied Mechanics, 1979, 46: 462-464. doi: 10.1115/1.3424575
    [16]
    CHU Z K H. Slip flow in an annulus with corrugated walls[J]. Journal of Physics D: Applied Physics, 2000, 33(6): 627. doi: 10.1088/0022-3727/33/6/307
    [17]
    MALEVICH A E, MITYUSHEV V V, ADLER P M. Couette flow in channels with wavy walls[J]. Acta Mechanica, 2008, 197(3/4): 247-283.
    [18]
    长龙, 刘全生, 菅永军, 等. 具有正弦粗糙度的环形微管道中脉冲流动[J]. 应用数学和力学, 2016, 37(10): 1118-1128. doi: 10.21656/1000-0887.370116

    CHANG Long, LIU Quansheng, JIAN Yongjun, et al. Oscillating flow in annular microchannels with sinusoidally corrugated walls[J]. Applied Mathematics and Mechanics, 2016, 37(10): 1118-1128. (in Chinese) doi: 10.21656/1000-0887.370116
    [19]
    XIA Z, MEI R, SHEPLAK M, et al. Electroosmotically driven creeping flows in a wavy microchannel[J]. Microfluidics and Nanofluidics, 2009, 6: 37-52. doi: 10.1007/s10404-008-0290-8
    [20]
    CHO C C, CHEN C L. Electrokinetically-driven non-Newtonian fluid flow in rough microchannel with complex-wavy surface[J]. Journal of Non-Newtonian Fluid Mechanics, 2012, 173: 13-20.
    [21]
    CHO C C, CHEN C L. Characteristics of combined electroosmotic flow and pressure-driven flow in microchannels with complex-wavy surfaces[J]. International Journal of Thermal Sciences, 2012, 61: 94-105. doi: 10.1016/j.ijthermalsci.2012.06.008
    [22]
    CHO C C, CHEN C L, CHEN C K. Characteristics of transient electroosmotic flow in microchannels with complex-wavy surface and periodic time-varying electric field[J]. Journal of Fluids Engineering, 2013, 135(2): 021301. doi: 10.1115/1.4023441
    [23]
    肖水云, 李鸣, 杨大勇. PNP模型的正弦粗糙微通道幂律流体电渗流研究[J]. 机械科学与技术, 2017, 36(3): 442-447. https://www.cnki.com.cn/Article/CJFDTOTAL-JXKX201703019.htm

    XIAO Shuiyun, LI Ming, YANG Dayong. Investigating effects of sinusoidal surface roughness on power-law fluid electroosmotic flow in microchannels using PNP model[J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(3): 442-447. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXKX201703019.htm
    [24]
    YOSHIDA H, KINJO T, WASHIZU H. Analysis of electro-osmotic flow in a microchannel with undulated surfaces[J]. Computers & Fluids, 2016, 124: 237-245. doi: 10.11897/SP.J.1016.2016.00237
    [25]
    SHU Y C, CHANG C C, CHEN Y S, et al. Electro-osmotic flow in a wavy microchannel: coherence between the electric potential and the wall shape function[J]. Physics of Fluids, 2010, 22(8): 082001. doi: 10.1063/1.3467035
    [26]
    CHANG L, JIAN Y, BUREN M, et al. Electroosmotic flow through a microtube with sinusoidal roughness[J]. Journal of Molecular Liquids, 2016, 220: 258-264. doi: 10.1016/j.molliq.2016.04.054
    [27]
    KERAMATI H, SADEGHI A, SAIDI M H, et al. Analytical solutions for thermo-fluidic transport in electroosmotic flow through rough microtubes[J]. International Journal of Heat and Mass Transfer, 2016, 92: 244-251. doi: 10.1016/j.ijheatmasstransfer.2015.08.089
    [28]
    MESSINGER R J, SQUIRES T M. Suppression of electro-osmotic flow by surface roughness[J]. Physical Review Letters, 2010, 105(14): 144503. doi: 10.1103/PhysRevLett.105.144503
    [29]
    FAKHARI M M, MIRBOZORGI S A. Numerical analysis of the effects of roughness on the electro-osmotic laminar flow between two parallel plates[J]. Meccanica, 2021, 56: 1025-1045. doi: 10.1007/s11012-020-01257-4
    [30]
    MA N, SUN Y, JIAN Y. Electromagnetohydrodynamic (EMHD) flow in a microchannel with random surface roughness[J]. Micromachines, 2023, 14: 1617. doi: 10.3390/mi14081617
    [31]
    WANG Z, SUN Y, JIAN Y. The effect of random roughness on the electromagnetic flow in a micropipe[J]. Micromachines, 2023, 14: 2054. doi: 10.3390/mi14112054
    [32]
    HOSHAM H A, THABET E N, ABD-ALLA A M, et al. Dynamic patterns of electroosmosis peristaltic flow of a Bingham fluid model in a complex wavy microchannel[J]. Scientific Reports, 2023, 13(1): 8686. doi: 10.1038/s41598-023-35410-2
    [33]
    ZHU Q, SU R, HU L, et al. Heat transfer enhancement for microchannel heat sink by strengthening fluids mixing with backward right-angled trapezoidal grooves in channel sidewalls[J]. International Communications in Heat and Mass Transfer, 2022, 135: 106106. doi: 10.1016/j.icheatmasstransfer.2022.106106
    [34]
    MOHAMMADI R, SHAHKARAMI N. Performance improvement of rectangular microchannel heat sinks using nanofluids and wavy channels[J]. Numerical Heat Transfer (Part A): Applications, 2022, 82(10): 619-639. doi: 10.1080/10407782.2022.2083840
    [35]
    MARTÍNEZ L, BAUTISTA O, ESCANDÓN J, et al. Electroosmotic flow of a Phan-Thien-Tanner fluid in a wavy-wall microchannel[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 498: 7-19.
    [36]
    MEHTA S K, PATI S, BARANYI L. Steric effect induced heat transfer for electroosmotic flow of Carreau fluid through a wavy microchannel[J]. Technische Mechanik-European Journal of Engineering Mechanics, 2023, 43(1): 2-12.
    [37]
    SI D, JIAN Y. Electromagnetohydrodynamic (EMHD) micropump of Jeffrey fluids through two parallel microchannels with corrugated walls[J]. Journal of Physics D: Applied Physics, 2015, 48(8): 085501. doi: 10.1088/0022-3727/48/8/085501
    [38]
    PARK H M, LEE J S, KIM T W. Comparison of the Nernst-Planck model and the Poisson-Boltzmann model for electroosmotic flows in microchannels[J]. Journal of Colloid and Interface Science, 2007, 315(2): 731-739. doi: 10.1016/j.jcis.2007.07.007
    [39]
    SOUSA J J, AFONSO A M, PINHO F T, et al. Effect of the skimming layer on electro-osmotic-Poiseuille flows of viscoelastic fluids[J]. Microfluidics and Nanofluidics, 2011, 10: 107-122. doi: 10.1007/s10404-010-0651-y
    [40]
    BIRD R B, CURTISS C F, ARMSTRONG R C, et al. Dynamics of Polymeric Liquids[M]. Kinetic Theory, Vol 2. Wiley, 1987.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article views (311) PDF downloads(37) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return