REN Jiu-sheng, CHENG Chang-jun. Dynamical Formation of Cavity in a Composed Hyper-Elastic Sphere[J]. Applied Mathematics and Mechanics, 2004, 25(11): 1117-1123.
Citation: MIN Jian, FU Zhuojia, GUO Yuan. Curriculum-Transfer-Learning-Based Physics-Informed Neural Networks for Simulating Long-Term-Evolution Convection-Diffusion Behaviors on Curved Surfaces[J]. Applied Mathematics and Mechanics, 2024, 45(9): 1212-1223. doi: 10.21656/1000-0887.440320

Curriculum-Transfer-Learning-Based Physics-Informed Neural Networks for Simulating Long-Term-Evolution Convection-Diffusion Behaviors on Curved Surfaces

doi: 10.21656/1000-0887.440320
  • Received Date: 2023-10-25
  • Rev Recd Date: 2024-02-22
  • Publish Date: 2024-09-01
  • Physics-informed neural networks (PINNs) encode prior physical knowledge into neural networks, alleviating the need for extensive data volume within the network. However, for long-term problems involving time-dependent partial differential equations, the traditional PINN exhibits poor stability and struggles to obtain effective solutions. To address this challenge, a novel physics-informed neural network based on curriculum learning and transfer learning (CTL-PINN) was introduced. The main idea of this method is to transform the problem of long-term course simulation into multiple short-term course simulation problems within this time domain. Under the concept of curriculum learning, and step by step from simpleness to difficulty, the scope of the time domain to be solved was gradually expanded by training the PINN within small time quanta. Furthermore, the transfer learning method was adopted to transfer across the time domain based on the curriculum learning, and the PINN was gradually employed for solution, thus to achieve long-term simulation of convection-diffusion behaviors on curved surfaces. The CTL-PINN was combined with the extrinsic surface operator processing technology to simulate long-term convection-diffusion behaviors on complex surfaces, and the effectiveness and robustness of the improved physics-informed neural network were verified through multiple numerical examples.

  • (Contributed by FU Zhoujia, M.AMM Youth Editorial Board)
  • [1]
    SAYEVAND K, MACHADO J T, MASTI I. Analysis of dual Bernstein operators in the solution of the fractional convection-diffusion equation arising in underground water pollution[J]. Journal of Computational and Applied Mathematics, 2022, 399 : 113729. doi: 10.1016/j.cam.2021.113729
    [2]
    NAZEMIFARD N, MASLIYAH J H, BHATTACHARJEE S. Particle deposition onto charge heterogeneous surfaces: convection-diffusion-migration model[J]. Langmuir, 2006, 22 (24): 9879-9893. doi: 10.1021/la061702q
    [3]
    BARREIRA R, ELLIOTT C M, MADZVAMUSE A. The surface finite element method for pattern formation on evolving biological surfaces[J]. Journal of Mathematical Biology, 2011, 63 (6): 1095-1119. doi: 10.1007/s00285-011-0401-0
    [4]
    殷雅俊. 曲面物理和力学[J]. 力学与实践, 2011, 33 (6): 1-8.

    YIN Yajun. Physics and mechanics on curved surfaces[J]. Mechanics in Engineering, 2011, 33 (6): 1-8. (in Chinese)
    [5]
    CASULLI V. A semi-implicit finite difference method for non-hydrostatic, free-surface flows[J]. International Journal for Numerical Methods in Fluids, 1999, 30 (4): 425-440. doi: 10.1002/(SICI)1097-0363(19990630)30:4<425::AID-FLD847>3.0.CO;2-D
    [6]
    DZIUK G, ELLIOTT C M. Finite elements on evolving surfaces[J]. IMA Journal of Numerical Analysis, 2006, 27 (2): 262-292.
    [7]
    张一鸣, 王雪雅, 冯春, 等. 连续体的有限单元法课程理论与上机课程建设[J]. 高教学刊, 2022, 8 (16): 88-91.

    ZHANG Yiming, WANG Xueya, FENG Chun, et al. Continuum finite element method curriculum theory and computer-based curriculum construction[J]. Journal of Higher Education, 2022, 8 (16): 88-91. (in Chinese)
    [8]
    CALHOUN D A, HELZEL C. A finite volume method for solving parabolic equations on logically Cartesian curved surface meshes[J]. SIAM Journal on Scientific Computing, 2010, 31 (6): 4066-4099. doi: 10.1137/08073322X
    [9]
    TANG Z, FU Z, CHEN M, et al. An efficient collocation method for long-time simulation of heat and mass transport on evolving surfaces[J]. Journal of Computational Physics, 2022, 463 : 111310. doi: 10.1016/j.jcp.2022.111310
    [10]
    KARNIADAKIS G E, KEVREKIDIS I G, LU L, et al. Physics-informed machine learning[J]. Nature Reviews Physics, 2021, 3 (6): 422-440. doi: 10.1038/s42254-021-00314-5
    [11]
    RAISSI M, PERDIKARIS P, KARNIADAKIS G E. Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[J]. Journal of Computational Physics, 2019, 378 : 686-707. doi: 10.1016/j.jcp.2018.10.045
    [12]
    YANG L, MENG X H, KARNIADAKIS G E. B-PINNs: Bayesian physics-informed neural networks for forward and inverse PDE problems with noisy data[J]. Journal of Computational Physics, 2021, 425 : 109913. doi: 10.1016/j.jcp.2020.109913
    [13]
    MAO Z P, MENG X H. Physics-informed neural networks with residual/gradient-based adaptive sampling methods for solving partial differential equations with sharp solutions[J]. Applied Mathematics and Mechanics (English Edition), 2023, 44 (7): 1069-1084. doi: 10.1007/s10483-023-2994-7
    [14]
    CAI S Z, MAO Z P, WANG Z C, et al. Physics-informed neural networks (PINNs) for fluid mechanics: a review[J]. Acta Mechanica Sinica, 2021, 37 (12): 1727-1738. doi: 10.1007/s10409-021-01148-1
    [15]
    林云云, 郑素佩, 封建湖, 等. 间断问题扩散正则化的PINN反问题求解算法[J]. 应用数学和力学, 2023, 44 (1): 112-122.

    LIN Yunyun, ZHENG Supei, FENG Jianhu, et al. Diffusive regularization inverse PINN solutions to discontinuous problems[J]. Applied Mathematics and Mechanics, 2023, 44 (1): 112-122. (in Chinese)
    [16]
    BELLMAN R. Dynamic programming[J]. Science, 1966, 153 (3731): 34-37. doi: 10.1126/science.153.3731.34
    [17]
    FANG Z, ZHAN J. A physics-informed neural network framework for PDEs on 3D surfaces: time independent problems[J]. IEEE Access, 2020, 8 : 26328-26335. doi: 10.1109/ACCESS.2019.2963390
    [18]
    TANG Z C, FU Z J, REUTSKIY S. An extrinsic approach based on physics-informed neural networks for PDEs on surfaces[J]. Mathematics, 2022, 10 (16): 2861. doi: 10.3390/math10162861
    [19]
    汤卓超, 傅卓佳. 基于物理信息的神经网络求解曲面上对流扩散方程[J]. 计算力学学报, 2023, 40 (2): 216-222.

    TANG Zhuochao, FU Zhuojia. Physics-informed neural networks for solving convection-diffusion equations on surfaces[J]. Chinese Journal of Computational Mechanics, 2023, 40 (2): 216-222. (in Chinese)
    [20]
    KRISHNAPRIYAN A, GHOLAMI A, ZHE S, et al. Characterizing possible failure modes in physics-informed neural networks[J]. Advances in Neural Information Processing Systems, 2021, 34 : 26548-26560.
    [21]
    PENWARDEN M, JAGTAP A D, ZHE S, et al. A unified scalable framework for causal sweeping strategies for physics-informed neural networks (PINNs) and their temporal decompositions[J]. March Learning, 2023, 493 : 112464. .
    [22]
    MENG X H, LI Z, ZHANG D K, et al. PPINN: parareal physics-informed neural network for time-dependent PDEs[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 370 : 113250.
    [23]
    JAGTAP A D, KARNIADAKIS G E. Extended physics-informed neural networks (XPINNs): a generalized space-time domain decomposition based deep learning framework for nonlinear partial differential equations[J]. Communications in Computational Physics, 2020, 28 (5): 2002-2041.
    [24]
    GUO J, YAO Y, WANG H, et al. Pre-training strategy for solving evolution equations based on physics-informed neural networks[J]. Journal of Computational Physics, 2023, 489 : 112258.
    [25]
    GOSWAMI S, ANITESCU C, CHAKRABORTY S, et al. Transfer learning enhanced physics informed neural network for phase-field modeling of fracture[J]. Theoretical and Applied Fracture Mechanics, 2020, 106 : 102447.
    [26]
    MVNZER M, BARD C. A curriculum-training-based strategy for distributing collocation points during physics-informed neural network training[R/OL]. 2022[2024-02-22]. https://arxiv.org/pdf/2211.11396.
    [27]
    LOH W L. On Latin hypercube sampling[J]. The Annals of Statistics, 1996, 24 (5): 2058-2080.
  • Relative Articles

    [1]LIU Xue-mei, DENG Zi-chen, HU Wei-peng. A Multi-Symplectic Method for Dynamic Responses of Incompressible Saturated Poroelastic Rods[J]. Applied Mathematics and Mechanics, 2015, 36(3): 242-251. doi: 10.3879/j.issn.1000-0887.2015.03.002
    [2]LIU Bai-yi-li, TANG Shao-qiang. Molecular Dynamics Simulation of Linear Harmonic Lattices at Finite Temperature[J]. Applied Mathematics and Mechanics, 2015, 36(1): 61-69. doi: 10.3879/j.issn.1000-0887.2015.01.005
    [3]WU Feng, SUN Yan, ZHONG Wan-xie. Inter-Belt Finite Element for the Analysis of Incompressible Material Problems[J]. Applied Mathematics and Mechanics, 2013, 34(1): 1-9. doi: 10.3879/j.issn.1000-0887.2013.01.001
    [4]YUAN Xue-gang, ZHANG Wen-zheng, ZHANG Hong-wu, ZHU Zheng-you. Stability Analysis of Radial Inflation of Incompressible Composite Rubber Tubes[J]. Applied Mathematics and Mechanics, 2011, 32(3): 286-292. doi: 10.3879/j.issn.1000-0887.2011.03.005
    [5]HOU Xiu-hui, DENG Zi-chen, ZHOU Jia-xi. Symplectic Analysis for Wave Propagation in One-Dimensional Nonlinear Periodic Structures[J]. Applied Mathematics and Mechanics, 2010, 31(11): 1297-1307. doi: 10.3879/j.issn.1000-0887.2010.11.004
    [6]YUAN Xue-gang, ZHANG Hong-wu, REN Jiu-sheng, ZHU Zheng-you. Some Qualitative Properties of Incompressible Hyperelastic Spherical Membranes Under Dynamic Loads[J]. Applied Mathematics and Mechanics, 2010, 31(7): 860-867. doi: 10.3879/j.issn.1000-0887.2010.07.011
    [7]ZHANG Shan-yuan, LIU Zhi-fang. Three Kinds of Nonlinear-Dispersive Waves in Finite Deformation Elastic Rods[J]. Applied Mathematics and Mechanics, 2008, 29(7): 825-832.
    [8]YANG Xiao, WANG Chen. Nonlinear Mathematical Model for Large Deflection of Incompressible Saturated Poroelastic Beams[J]. Applied Mathematics and Mechanics, 2007, 28(12): 1417-1424.
    [9]CHENG Chang-jun, MEI Bo. Dynamical Formation of Cavity for Composed Thermal Hyperelastic Spheres in Non-Uniform Temperature Fields[J]. Applied Mathematics and Mechanics, 2006, 27(4): 395-403.
    [10]GUO Jian-gang, ZHOU Li-jun, ZHANG Shan-yuan. Geometrical Nonlinear Waves in Finite Deformation Elastic Rods[J]. Applied Mathematics and Mechanics, 2005, 26(5): 614-620.
    [11]YUAN Xue-gang, ZHU Zheng-you, CHENG Chang-jun. Qualitative Analysis of Dynamical Behavior for an Imperfect Incompressible Neo-Hookean Spherical Shell[J]. Applied Mathematics and Mechanics, 2005, 26(8): 892-898.
    [12]REN Jiu-sheng, CHENG Chang-jun, ZHU Zheng-you. Cavity Formation at the Center of a Sphere Composed of Two Compressible Hyper-Elastic Materials[J]. Applied Mathematics and Mechanics, 2003, 24(9): 892-898.
    [13]REN Jiu-sheng, CHENG Chang-jun. Cavitated Bifurcation for Incompressible Hyperelastic Material[J]. Applied Mathematics and Mechanics, 2002, 23(8): 783-789.
    [14]XU Shi-xiong, MAO Xiao-chun. Nonlinear Dynamics Modeling of Mechanical Periodicity of End Diastolic Volume of Left Ventricle[J]. Applied Mathematics and Mechanics, 2001, (10): 1067-1074.
    [15]Guo Xingming. The Existence of Solution to the Finite Elastodynamics With Mixed Boundary Conditions[J]. Applied Mathematics and Mechanics, 1998, 19(1): 27-34.
    [16]Guo Xingming. The Existence of Solutions in Nonlinear Elastodynamics[J]. Applied Mathematics and Mechanics, 1997, 18(3): 223-229.
    [17]Dai Tianmin. Dynamical Equations of Various Types for Finite Deformable Polar Elastic Media[J]. Applied Mathematics and Mechanics, 1997, 18(10): 861-865.
    [18]Jin Jun. Existence and Uniqueness of Periodic Solutions for Fourth-Order Nonlinear Periodic Systems[J]. Applied Mathematics and Mechanics, 1990, 11(1): 87-94.
    [19]Huang Zhu-ping. Two Theorems Concerning Discontinuities in Dynamics of Rigid-Perfectly Plastic Continua under Finite Deformation[J]. Applied Mathematics and Mechanics, 1985, 6(1): 61-66.
    [20]Chen Zhi-da. Application of Chien’s Theorem to the Establishing of General Variational Principle in Polar Elasticity of Finite Deformation[J]. Applied Mathematics and Mechanics, 1981, 2(2): 191-196.
  • 加载中
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 28.0 %FULLTEXT: 28.0 %META: 60.7 %META: 60.7 %PDF: 11.3 %PDF: 11.3 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 21.8 %其他: 21.8 %其他: 1.3 %其他: 1.3 %San Mateo: 0.6 %San Mateo: 0.6 %Seattle: 0.2 %Seattle: 0.2 %上海: 0.9 %上海: 0.9 %兰州: 0.6 %兰州: 0.6 %内华达州: 0.6 %内华达州: 0.6 %利沃夫: 1.1 %利沃夫: 1.1 %北京: 3.8 %北京: 3.8 %十堰: 0.6 %十堰: 0.6 %南京: 4.3 %南京: 4.3 %台州: 0.9 %台州: 0.9 %哈尔滨: 0.4 %哈尔滨: 0.4 %唐山: 0.2 %唐山: 0.2 %嘉兴: 0.4 %嘉兴: 0.4 %圣保罗: 0.8 %圣保罗: 0.8 %大连: 0.9 %大连: 0.9 %天津: 1.7 %天津: 1.7 %太原: 0.4 %太原: 0.4 %威海: 0.2 %威海: 0.2 %宜春: 0.6 %宜春: 0.6 %宣城: 0.6 %宣城: 0.6 %常德: 0.2 %常德: 0.2 %广州: 0.8 %广州: 0.8 %张家口: 4.7 %张家口: 4.7 %徐州: 0.2 %徐州: 0.2 %成都: 3.0 %成都: 3.0 %昆明: 0.8 %昆明: 0.8 %朝阳: 0.2 %朝阳: 0.2 %杭州: 0.8 %杭州: 0.8 %武汉: 0.4 %武汉: 0.4 %洛阳: 0.4 %洛阳: 0.4 %浦那: 0.6 %浦那: 0.6 %深圳: 0.8 %深圳: 0.8 %温州: 0.9 %温州: 0.9 %湖州: 0.4 %湖州: 0.4 %漯河: 1.5 %漯河: 1.5 %石家庄: 0.4 %石家庄: 0.4 %秦皇岛: 0.4 %秦皇岛: 0.4 %绍兴: 0.4 %绍兴: 0.4 %芒廷维尤: 9.4 %芒廷维尤: 9.4 %芝加哥: 1.5 %芝加哥: 1.5 %苏州: 0.2 %苏州: 0.2 %衡阳: 0.2 %衡阳: 0.2 %西宁: 19.5 %西宁: 19.5 %西安: 0.8 %西安: 0.8 %诺沃克: 3.6 %诺沃克: 3.6 %贵阳: 0.2 %贵阳: 0.2 %运城: 0.2 %运城: 0.2 %郑州: 2.3 %郑州: 2.3 %重庆: 0.9 %重庆: 0.9 %长沙: 1.9 %长沙: 1.9 %青岛: 0.2 %青岛: 0.2 %其他其他San MateoSeattle上海兰州内华达州利沃夫北京十堰南京台州哈尔滨唐山嘉兴圣保罗大连天津太原威海宜春宣城常德广州张家口徐州成都昆明朝阳杭州武汉洛阳浦那深圳温州湖州漯河石家庄秦皇岛绍兴芒廷维尤芝加哥苏州衡阳西宁西安诺沃克贵阳运城郑州重庆长沙青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(4)

    Article Metrics

    Article views (323) PDF downloads(62) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return