Citation: | MIN Jian, FU Zhoujia, GUO Yuan. Curriculum-Transfer-Learning-Based Physics-Informed Neural Networks for Simulating Long-Term-Evolution Convection-Diffusion Behaviors on Curved Surfaces[J]. Applied Mathematics and Mechanics, 2024, 45(9): 1212-1223. doi: 10.21656/1000-0887.440320 |
[1] |
SAYEVAND K, MACHADO J T, MASTI I. Analysis of dual Bernstein operators in the solution of the fractional convection-diffusion equation arising in underground water pollution[J]. Journal of Computational and Applied Mathematics, 2022, 399 : 113729. doi: 10.1016/j.cam.2021.113729
|
[2] |
NAZEMIFARD N, MASLIYAH J H, BHATTACHARJEE S. Particle deposition onto charge heterogeneous surfaces: convection-diffusion-migration model[J]. Langmuir, 2006, 22 (24): 9879-9893. doi: 10.1021/la061702q
|
[3] |
BARREIRA R, ELLIOTT C M, MADZVAMUSE A. The surface finite element method for pattern formation on evolving biological surfaces[J]. Journal of Mathematical Biology, 2011, 63 (6): 1095-1119. doi: 10.1007/s00285-011-0401-0
|
[4] |
殷雅俊. 曲面物理和力学[J]. 力学与实践, 2011, 33 (6): 1-8.
YIN Yajun. Physics and mechanics on curved surfaces[J]. Mechanics in Engineering, 2011, 33 (6): 1-8. (in Chinese)
|
[5] |
CASULLI V. A semi-implicit finite difference method for non-hydrostatic, free-surface flows[J]. International Journal for Numerical Methods in Fluids, 1999, 30 (4): 425-440. doi: 10.1002/(SICI)1097-0363(19990630)30:4<425::AID-FLD847>3.0.CO;2-D
|
[6] |
DZIUK G, ELLIOTT C M. Finite elements on evolving surfaces[J]. IMA Journal of Numerical Analysis, 2006, 27 (2): 262-292.
|
[7] |
张一鸣, 王雪雅, 冯春, 等. 连续体的有限单元法课程理论与上机课程建设[J]. 高教学刊, 2022, 8 (16): 88-91.
ZHANG Yiming, WANG Xueya, FENG Chun, et al. Continuum finite element method curriculum theory and computer-based curriculum construction[J]. Journal of Higher Education, 2022, 8 (16): 88-91. (in Chinese)
|
[8] |
CALHOUN D A, HELZEL C. A finite volume method for solving parabolic equations on logically Cartesian curved surface meshes[J]. SIAM Journal on Scientific Computing, 2010, 31 (6): 4066-4099. doi: 10.1137/08073322X
|
[9] |
TANG Z, FU Z, CHEN M, et al. An efficient collocation method for long-time simulation of heat and mass transport on evolving surfaces[J]. Journal of Computational Physics, 2022, 463 : 111310. doi: 10.1016/j.jcp.2022.111310
|
[10] |
KARNIADAKIS G E, KEVREKIDIS I G, LU L, et al. Physics-informed machine learning[J]. Nature Reviews Physics, 2021, 3 (6): 422-440. doi: 10.1038/s42254-021-00314-5
|
[11] |
RAISSI M, PERDIKARIS P, KARNIADAKIS G E. Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[J]. Journal of Computational Physics, 2019, 378 : 686-707. doi: 10.1016/j.jcp.2018.10.045
|
[12] |
YANG L, MENG X H, KARNIADAKIS G E. B-PINNs: Bayesian physics-informed neural networks for forward and inverse PDE problems with noisy data[J]. Journal of Computational Physics, 2021, 425 : 109913. doi: 10.1016/j.jcp.2020.109913
|
[13] |
MAO Z P, MENG X H. Physics-informed neural networks with residual/gradient-based adaptive sampling methods for solving partial differential equations with sharp solutions[J]. Applied Mathematics and Mechanics (English Edition), 2023, 44 (7): 1069-1084. doi: 10.1007/s10483-023-2994-7
|
[14] |
CAI S Z, MAO Z P, WANG Z C, et al. Physics-informed neural networks (PINNs) for fluid mechanics: a review[J]. Acta Mechanica Sinica, 2021, 37 (12): 1727-1738. doi: 10.1007/s10409-021-01148-1
|
[15] |
林云云, 郑素佩, 封建湖, 等. 间断问题扩散正则化的PINN反问题求解算法[J]. 应用数学和力学, 2023, 44 (1): 112-122.
LIN Yunyun, ZHENG Supei, FENG Jianhu, et al. Diffusive regularization inverse PINN solutions to discontinuous problems[J]. Applied Mathematics and Mechanics, 2023, 44 (1): 112-122. (in Chinese)
|
[16] |
BELLMAN R. Dynamic programming[J]. Science, 1966, 153 (3731): 34-37. doi: 10.1126/science.153.3731.34
|
[17] |
FANG Z, ZHAN J. A physics-informed neural network framework for PDEs on 3D surfaces: time independent problems[J]. IEEE Access, 2020, 8 : 26328-26335. doi: 10.1109/ACCESS.2019.2963390
|
[18] |
TANG Z C, FU Z J, REUTSKIY S. An extrinsic approach based on physics-informed neural networks for PDEs on surfaces[J]. Mathematics, 2022, 10 (16): 2861. doi: 10.3390/math10162861
|
[19] |
汤卓超, 傅卓佳. 基于物理信息的神经网络求解曲面上对流扩散方程[J]. 计算力学学报, 2023, 40 (2): 216-222.
TANG Zhuochao, FU Zhuojia. Physics-informed neural networks for solving convection-diffusion equations on surfaces[J]. Chinese Journal of Computational Mechanics, 2023, 40 (2): 216-222. (in Chinese)
|
[20] |
KRISHNAPRIYAN A, GHOLAMI A, ZHE S, et al. Characterizing possible failure modes in physics-informed neural networks[J]. Advances in Neural Information Processing Systems, 2021, 34 : 26548-26560.
|
[21] |
PENWARDEN M, JAGTAP A D, ZHE S, et al. A unified scalable framework for causal sweeping strategies for physics-informed neural networks (PINNs) and their temporal decompositions[J]. March Learning, 2023, 493 : 112464. .
|
[22] |
MENG X H, LI Z, ZHANG D K, et al. PPINN: parareal physics-informed neural network for time-dependent PDEs[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 370 : 113250.
|
[23] |
JAGTAP A D, KARNIADAKIS G E. Extended physics-informed neural networks (XPINNs): a generalized space-time domain decomposition based deep learning framework for nonlinear partial differential equations[J]. Communications in Computational Physics, 2020, 28 (5): 2002-2041.
|
[24] |
GUO J, YAO Y, WANG H, et al. Pre-training strategy for solving evolution equations based on physics-informed neural networks[J]. Journal of Computational Physics, 2023, 489 : 112258.
|
[25] |
GOSWAMI S, ANITESCU C, CHAKRABORTY S, et al. Transfer learning enhanced physics informed neural network for phase-field modeling of fracture[J]. Theoretical and Applied Fracture Mechanics, 2020, 106 : 102447.
|
[26] |
MVNZER M, BARD C. A curriculum-training-based strategy for distributing collocation points during physics-informed neural network training[R/OL]. 2022[2024-02-22].
|
[27] |
LOH W L. On Latin hypercube sampling[J]. The Annals of Statistics, 1996, 24 (5): 2058-2080.
|